论文标题
一个非固定的可确定的chow定理
A non-archimedean definable Chow theorem
论文作者
论文摘要
Peterzil和Starchenko已证明了Chow定理的以下令人惊讶的概括:在O最低结构中可以定义的复杂代数品种的封闭分析子集实际上是代数子集。在本文中,我们证明了这个结果的非一切象类似物。
Peterzil and Starchenko have proved the following surprising generalization of Chow's theorem: A closed analytic subset of a complex algebraic variety that is definable in an o-minimal structure, is in fact an algebraic subset. In this paper, we prove a non-archimedean analogue of this result.