论文标题
横流涡轮机内囊内角速度控制的模拟
Simulations of Intracycle Angular Velocity Control for a Cross-Flow Turbine
论文作者
论文摘要
在计算中探索了直叶的跨流涡轮机,用于在风和水流中收集能量。跨流涡轮机的一个挑战是在叶片上瞬时出现高表观攻击角度,从而降低了由于流动分离而引起的效率。本文探讨了通过角速度内部控制角度对攻击角度的运动学操纵。使用中等雷诺数字的不稳定雷诺平均纳维尔 - 斯托克斯(URAN)模型,探索了运动和相关的流体物理学,以进行限制和无限制的配置。这些计算表明,涡轮效率的提高高达54%,非常与以前的内部控制实验所显示的好处相匹配。模拟显示了相对于刀片的攻击角度和流速的时间进化,后者通过正弦角速度进行了修改,使得峰扭矩的产生与峰角速度对齐。在限制流中的最佳运动学时,在峰值发电过程中,流量分离很小,但是随着扭矩降低,有一个较大的后缘边缘涡流(TEV)。无限制的配置具有更突出的流动分离,并且更容易受到雷诺数的影响,从而在与密闭流相同的运动条件下,发电量增加了41%。
Straight-bladed cross-flow turbines are computationally explored for harvesting energy in wind and water currents. One challenge for cross-flow turbines is the transient occurrence of high apparent angles of attack on the blades that reduces efficiency due to flow separation. This paper explores kinematic manipulation of the apparent angle of attack through intracycle control of the angular velocity. Using an unsteady Reynolds-averaged Navier-Stokes (URANS) model at moderate Reynolds numbers, the kinematics and associated flow physics are explored for confined and unconfined configurations. The computations demonstrate an increase in turbine efficiency up to 54%, very closely matching the benefits shown by previous intracycle control experiments. Simulations display the time-evolution of angle of attack and flow velocity relative to the blade, which are modified with sinusoidal angular velocity such that the peak torque generation aligns with the peak angular velocity. With optimal kinematics in a confined flow there is minimal flow separation during peak power generation, however there is a large trailing edge vortex (TEV) shed as the torque decreases. The unconfined configuration has more prominent flow separation and is more susceptible to Reynolds number, resulting in a 41% increase in power generation under the same kinematic conditions as the confined flow.