论文标题
ALMA对70美元\ rm m $ $ Dark High Mass Clumps的调查(灰烬)。 II:分子流出在原始群集的极端早期阶段
The ALMA Survey of 70 $μ\rm m$ Dark High-mass Clumps in Early Stages (ASHES). II: Molecular Outflows in the Extreme Early Stages of Protocluster Formation
论文作者
论文摘要
我们介绍了一项从高质量恒星形成的流出阶段的研究,该阶段是从ALMA调查中获得的70 $μ\ rm m $ m $深色高质量团块在早期(灰烬)中获得的。十二个巨大的3.6 $ - $ 70 $ \ rm m $ $ $ $ $ $ $ $ $ $ $ - 黑暗的prestellar团块候选者被观察到6架的Atacama大毫米/亚毫米阵列(ALMA)。使用CO和SIO发射线,在301个密度核心中,确定了41个距离41个,可使用CO和SIO发射线,从而产生14%的检测率。我们发现6个与低质量岩心相关的情节分子流出,表明情节流出(因此是情节增生)始于一系列核心质量的Protostellar Evolution的极早期阶段。连续弹出事件之间的时间跨度要比在更演变的阶段中发现的时间跨度要小得多,这表明弹出性发作性时间尺度可能不会随着时间的流逝而恒定。估计的流出动力学时间尺度似乎随着核心质量的增加而增加,这可能表明,比较少的核心核心更大的核心具有更长的积聚时间尺度。与更具进化的原始物质相比,这70美元\ rm m $暗物体中的积聚率较低,表明吸积率随时间增加。总流出能量速率小于湍流耗散速率,这表明流出引起的湍流无法维持当前时期的内部团块湍流。我们经常在这70 $μ\ rm m $黑块中检测到热SIO发射,与共同流出无关。这种SIO发射可以通过碰撞,交叉流,未发现的质子或其他动作产生。
We present a study of outflows at extremely early stages of high-mass star formation obtained from the ALMA Survey of 70 $μ\rm m$ dark High-mass clumps in Early Stages (ASHES). Twelve massive 3.6$-$70 $μ\rm m$ dark prestellar clump candidates were observed with the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 6. Forty-three outflows are identified toward 41 out of 301 dense cores using the CO and SiO emission lines, yielding a detection rate of 14%. We discover 6 episodic molecular outflows associated with low- to high-mass cores, indicating that episodic outflows (and therefore episodic accretion) begin at extremely early stages of protostellar evolution for a range of core masses. The time span between consecutive ejection events is much smaller than those found in more evolved stages, which indicates that the ejection episodicity timescale is likely not constant over time. The estimated outflow dynamical timescale appears to increase with core masses, which likely indicates that more massive cores have longer accretion timescales than less massive cores. The lower accretion rates in these 70 $μ\rm m$ dark objects compared to the more evolved protostars indicate that the accretion rates increase with time. The total outflow energy rate is smaller than the turbulent energy dissipation rate, which suggests that outflow induced turbulence cannot sustain the internal clump turbulence at the current epoch. We often detect thermal SiO emission within these 70 $μ\rm m$ dark clumps that is unrelated to CO outflows. This SiO emission could be produced by collisions, intersection flows, undetected protostars, or other motions.