论文标题

量子步行的光谱和散射特性在同质树上

Spectral and scattering properties of quantum walks on homogenous trees of odd degree

论文作者

de Aldecoa, Rafael Tiedra

论文摘要

For unitary operators $U_0,U$ in Hilbert spaces ${\mathcal H}_0,{\mathcal H}$ and identification operator $J:{\mathcal H}_0\to{\mathcal H}$, we present results on the derivation of a Mourre estimate for $U$ starting from a Mourre estimate for $U_0$ and on the existence and三重$(u,u_0,j)$的波算子的完整性。作为应用程序,我们确定一类各向异性量子行走的光谱和散射特性,在具有进化操作员$ u $的奇数树上行走。特别是,我们建立了$ U $的Mourre估算值,获得一类本地$ u $ smooth操作员,并证明$ u $的频谱覆盖了整个单元圆圈,并且纯粹是连续的,在外部可能是有限的套装,其中$ u $可能具有有限多重的特征值。我们还表明,(至少)(至少)三种不同的免费进化运算符选择$ u_0 $是可以证明波动运算符的存在和完整性的三种选择。

For unitary operators $U_0,U$ in Hilbert spaces ${\mathcal H}_0,{\mathcal H}$ and identification operator $J:{\mathcal H}_0\to{\mathcal H}$, we present results on the derivation of a Mourre estimate for $U$ starting from a Mourre estimate for $U_0$ and on the existence and completeness of the wave operators for the triple $(U,U_0,J)$. As an application, we determine spectral and scattering properties of a class of anisotropic quantum walks on homogenous trees of odd degree with evolution operator $U$. In particular, we establish a Mourre estimate for $U$, obtain a class of locally $U$-smooth operators, and prove that the spectrum of $U$ covers the whole unit circle and is purely absolutely continuous, outside possibly a finite set where $U$ may have eigenvalues of finite multiplicity. We also show that (at least) three different choices of free evolution operators $U_0$ are possible for the proof of the existence and completeness of the wave operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源