论文标题

ARM:基于置信的对抗性重新加权模块,用于粗糙的语义分割

ARM: A Confidence-Based Adversarial Reweighting Module for Coarse Semantic Segmentation

论文作者

Liu, Jingchao, Du, Ye, Fu, Zehua, Liu, Qingjie, Wang, Yunhong

论文摘要

标记的语义分割注释易于获取,因此具有失去边缘细节和引入背景像素的风险。在固有的噪声中阻碍了现有的粗略注释,仅作为模型预训练的奖励。在本文中,我们试图通过基于信心的重新加权策略来利用其潜力。为了扩展,基于损失的重新加权策略通常会采用高损失价值来识别两种完全不同类型的像素,即无噪声注释中有价值的像素和噪音注释中的错误标记像素。这使得不可能执行两项挖掘有价值的像素和抑制标签的像素的任务。但是,在预测信心的帮助下,我们成功地解决了这一难题,并同时通过单个重新持续策略执行了两个子任务。此外,我们将这种策略推广到对抗性重新加权模块(ARM)中,并严格证明其收敛性。标准数据集的实验表明,我们的手臂可以为粗糙注释和精细注释带来一致的改进。具体而言,在DeepLabv3+顶部建造的ARM在粗糙标记的CityScapes上的MIOU提高了相当大的余量,并将ADE20K数据集的MIOU提高到47.50。

Coarsely-labeled semantic segmentation annotations are easy to obtain, but therefore bear the risk of losing edge details and introducing background pixels. Impeded by the inherent noise, existing coarse annotations are only taken as a bonus for model pre-training. In this paper, we try to exploit their potentials with a confidence-based reweighting strategy. To expand, loss-based reweighting strategies usually take the high loss value to identify two completely different types of pixels, namely, valuable pixels in noise-free annotations and mislabeled pixels in noisy annotations. This makes it impossible to perform two tasks of mining valuable pixels and suppressing mislabeled pixels at the same time. However, with the help of the prediction confidence, we successfully solve this dilemma and simultaneously perform two subtasks with a single reweighting strategy. Furthermore, we generalize this strategy into an Adversarial Reweighting Module (ARM) and prove its convergence strictly. Experiments on standard datasets shows our ARM can bring consistent improvements for both coarse annotations and fine annotations. Specifically, built on top of DeepLabv3+, ARM improves the mIoU on the coarsely-labeled Cityscapes by a considerable margin and increases the mIoU on the ADE20K dataset to 47.50.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源