论文标题
自动选择工程应用的基础自适应稀疏多项式混乱扩展
Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applications
论文作者
论文摘要
稀疏的多项式混乱扩展(PCE)是一种有效且广泛使用的替代建模方法,用于用于计算昂贵模型的工程问题的不确定性定量。为了以最有效的方式利用可用信息,已经提出了几种所谓基础自适应稀疏PCE的方法,以自适应地确定PCE的多项式回归器(“基础”)集。 本文的目的是帮助从业者确定为其模型构建代理PCE的最合适方法。我们描述了最近稀疏PCE文献中的三种最先进的基础自适应方法,并在大量计算模型上的全球近似准确性方面进行了广泛的基准。研究稀疏回归求解器和基础适应性方案之间的协同作用,我们发现适当的求解器和基础自适应方案的选择非常重要,因为它可能导致一个以上的性能差异。没有一种方法明显优于其他方法,但是将分析分为类(关于输入维度和实验设计尺寸),我们能够确定每个类别表现出相对较好性能的类别的特定稀疏求解器和基础适应性组合。 为了进一步改善这些发现,我们引入了一个新的求解器和基础自适应选择方案,以交叉验证误差为指导。我们证明,此自动选择程序在准确性方面提供了几乎最佳的结果,并且比基准获得的情况更一般性的解决方案,同时比逐案的建议更一般。
Sparse polynomial chaos expansions (PCE) are an efficient and widely used surrogate modeling method in uncertainty quantification for engineering problems with computationally expensive models. To make use of the available information in the most efficient way, several approaches for so-called basis-adaptive sparse PCE have been proposed to determine the set of polynomial regressors ("basis") for PCE adaptively. The goal of this paper is to help practitioners identify the most suitable methods for constructing a surrogate PCE for their model. We describe three state-of-the-art basis-adaptive approaches from the recent sparse PCE literature and conduct an extensive benchmark in terms of global approximation accuracy on a large set of computational models. Investigating the synergies between sparse regression solvers and basis adaptivity schemes, we find that the choice of the proper solver and basis-adaptive scheme is very important, as it can result in more than one order of magnitude difference in performance. No single method significantly outperforms the others, but dividing the analysis into classes (regarding input dimension and experimental design size), we are able to identify specific sparse solver and basis adaptivity combinations for each class that show comparatively good performance. To further improve on these findings, we introduce a novel solver and basis adaptivity selection scheme guided by cross-validation error. We demonstrate that this automatic selection procedure provides close-to-optimal results in terms of accuracy, and significantly more robust solutions, while being more general than the case-by-case recommendations obtained by the benchmark.