论文标题

固态锂离子电池在室温下使用新的硼氢化物Argyrodite电解质

Solid-state Li-ion batteries operating at room temperature using new borohydride argyrodite electrolytes

论文作者

Dao, Anh Ha, López-Aranguren, Pedro, Zhang, Junxian, Cuevas, Fermín, Latroche, Michel

论文摘要

使用新的(BH4) - 取代的Argyrodite LI6PS5Z0.83(BH4)0.17,(Z = Cl,I)固体电解质,Li-Metal固态电池在室温下运行。通过将改良的argyrodite与LI阳极和两种类型的阴极组合结合来制成细胞:氧化物:lixmo2(m = 1/3ni,1/3mn,1/3co; so So NMC)和二硫化钛二硫化钛,TIS2。通过电静态循环和交替的交流AC电化学阻抗测量评估细胞的性能。对于至少数十个循环,观察到两次阴极的可逆能力。然而,高压氧化物阴极细胞比硫化物循环时显示出更低的可逆能力和更大的褪色。 AC阻抗测量结果表明,在阴极侧的界面电阻增加,氧化物阴极诱导了容量褪色。这种抗性归因于NMC的固有不良电导率以及氧化物材料和argyrodite电解质之间的界面反应。相反,在循环过程中,Tis2细胞的低界面电阻在这种活性材料和取代的argyrodites之间具有更好的化学兼容性,从而使阴极材料(240 MAHG-1)完全循环,至少35个循环,摄入效率至少超过97%。

Using a new class of (BH4)- substituted argyrodite Li6PS5Z0.83(BH4)0.17, (Z = Cl, I) solid electrolyte, Li-metal solid-state batteries operating at room temperature have been developed. The cells were made by combining the modified argyrodite with an In-Li anode and two types of cathode: an oxide, LixMO2 (M = 1/3Ni, 1/3Mn, 1/3Co; so called NMC) and a titanium disulfide, TiS2. The performance of the cells was evaluated through galvanostatic cycling and Alternating Current AC electrochemical impedance measurements. Reversible capacities were observed for both cathodes for at least tens of cycles. However, the high-voltage oxide cathode cell shows lower reversible capacity and larger fading upon cycling than the sulfide one. The AC impedance measurements revealed an increasing interfacial resistance at the cathode side for the oxide cathode inducing the capacity fading. This resistance was attributed to the intrinsic poor conductivity of NMC and interfacial reactions between the oxide material and the argyrodite electrolyte. On the contrary, the low interfacial resistance of the TiS2 cell during cycling evidences a better chemical compatibility between this active material and substituted argyrodites, allowing full cycling of the cathode material, 240 mAhg-1, for at least 35 cycles with a coulombic efficiency above 97%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源