论文标题
在具有高分散光谱的热jupiter气氛中搜索FEH
A Search for FeH in Hot-Jupiter Atmospheres with High-Dispersion Spectroscopy
论文作者
论文摘要
到目前为止,在诸如水和CO之类的系外行星大气中检测到的大多数分子都出现在各种压力和温度下。相反,金属氢化物存在于更具体的参数空间方案中,因此可以用作大气条件的探针。氢化铁(FEH)是低质量恒星和棕色矮人中不透明度的主要来源,最近在低分辨率下观察到了其在系外行星中存在的证据。我们对档案卡门的近红外数据进行了系统的搜索,以在12个系外行星的过渡过程中进行FEH的签名。这些行星跨越了各种平衡温度(600 $ \ Lessim t_ {eq} \ Lessim $ 4000K)和表面重力(2.5 $ \ lyssim \ lyssim \ mathrm {log} g \ lyssim $ 3.5)。我们在任何大气中都没有发现具有统计学意义的FEH信号,而是在两个行星WASP-33B和Mascara-2b中获得了潜在的低信任信号(SNR $ \ sim $ 3)。外部大气层的先前建模表明,预计1800 k和3000k和log $ g \ gtrsim3 $的温度最高的最高体积混合比(VMR)为10 $^{ - 7} $至10 $^{ - 9} $。我们发现低信心信号的两个行星预计会吸收强大。我们对每个行星进行了注射和恢复测试,并确定在每个行星中都会检测到FEH的VMRS $ \ GEQ 10^{ - 6} $,并且可以在某些行星中以VMR的低至10 $^{-9.5} $检测到FEH。对于最终检测FEH并评估其在热木星气氛的温度结构中的作用是必要的其他观察结果。
Most of the molecules detected thus far in exoplanet atmospheres, such as water and CO, are present for a large range of pressures and temperatures. In contrast, metal hydrides exist in much more specific regimes of parameter space, and so can be used as probes of atmospheric conditions. Iron hydride (FeH) is a dominant source of opacity in low-mass stars and brown dwarfs, and evidence for its existence in exoplanets has recently been observed at low resolution. We performed a systematic search of archival CARMENES near-infrared data for signatures of FeH during transits of 12 exoplanets. These planets span a large range of equilibrium temperatures (600 $\lesssim T_{eq} \lesssim$ 4000K) and surface gravities (2.5 $\lesssim \mathrm{log} g \lesssim$ 3.5). We did not find a statistically significant FeH signal in any of the atmospheres, but obtained potential low-confidence signals (SNR$\sim$3) in two planets, WASP-33b and MASCARA-2b. Previous modeling of exoplanet atmospheres indicate that the highest volume mixing ratios (VMRs) of 10$^{-7}$ to 10$^{-9}$ are expected for temperatures between 1800 and 3000K and log $g \gtrsim3$. The two planets for which we find low-confidence signals are in the regime where strong FeH absorption is expected. We performed injection and recovery tests for each planet and determined that FeH would be detected in every planet for VMRs $\geq 10^{-6}$, and could be detected in some planets for VMRs as low as 10$^{-9.5}$. Additional observations are necessary to conclusively detect FeH and assess its role in the temperature structures of hot Jupiter atmospheres.