论文标题
从扩散MRI学习解剖学分割
Learning Anatomical Segmentations for Tractography from Diffusion MRI
论文作者
论文摘要
迄今为止,扩散MRI的深度学习方法主要集中在基于体素的病变或白种纤维区域的分割上。将道表示为体积标签而不是流线的缺点是,它排除了沿着小区域的微观结构或几何特征的点分析。确实允许进行此类分析的传统拖拉管道可以从详细的全脑分割中受益,以指导道路重建。在这里,我们直接在扩散加权的MR图像上介绍了170个解剖区域的快速,基于深度学习的分割,从而消除了常规分割方法对T 1加权图像的依赖性和缓慢的预处理管道。在扩散空间中本地工作避免了跨模态以及插值伪像的非线性畸变和登记误差。我们证明,根据组织类型的不同,我们证明了0.70和0 .87骰子之间的一致分割结果。我们研究了扩散衍生的输入的各种组合,并在不同数量的梯度方向上显示了概括。最后,整合我们为拖拉管道提供解剖学先验的方法,例如曲库拉,即使在没有高质量的T 1加权扫描的情况下,也可以消除预处理时间的数小时,并允许处理,而不会降低产生的小区域估计的质量。
Deep learning approaches for diffusion MRI have so far focused primarily on voxel-based segmentation of lesions or white-matter fiber tracts. A drawback of representing tracts as volumetric labels, rather than sets of streamlines, is that it precludes point-wise analyses of microstructural or geometric features along a tract. Traditional tractography pipelines, which do allow such analyses, can benefit from detailed whole-brain segmentations to guide tract reconstruction. Here, we introduce fast, deep learning-based segmentation of 170 anatomical regions directly on diffusion-weighted MR images, removing the dependency of conventional segmentation methods on T 1-weighted images and slow pre-processing pipelines. Working natively in diffusion space avoids non-linear distortions and registration errors across modalities, as well as interpolation artifacts. We demonstrate consistent segmentation results between 0 .70 and 0 .87 Dice depending on the tissue type. We investigate various combinations of diffusion-derived inputs and show generalization across different numbers of gradient directions. Finally, integrating our approach to provide anatomical priors for tractography pipelines, such as TRACULA, removes hours of pre-processing time and permits processing even in the absence of high-quality T 1-weighted scans, without degrading the quality of the resulting tract estimates.