论文标题

两人游戏中最佳相关平衡的多项式时间计算与公共机会移动的大型游戏中的多项式计算

Polynomial-Time Computation of Optimal Correlated Equilibria in Two-Player Extensive-Form Games with Public Chance Moves and Beyond

论文作者

Farina, Gabriele, Sandholm, Tuomas

论文摘要

与普通形式的游戏不同,已经研究了45年以上相关的平衡,广泛的形式相关性仍然不太了解。造成这种差距的部分原因是,广泛的游戏的顺序性质允许在正常形式的设置中产生丰富的行为和激励措施。这种丰富度转化为围绕广泛形式相关的平衡的复杂性景观明显不同。到目前为止,众所周知,在两种竞争者的游戏中,在两种竞争者的大量游戏中,在两种玩法的游戏中,在两种竞争者的范围内都不可能移动游戏时,在两种游戏中发现最佳的广泛形式相关平衡(EFCE),广泛的粗糙相关平衡(EFCCE)或正常形式的粗糙相关平衡(NFCCE)是可计算的典范。在本文中,我们通过表明在两人游戏中,可以在多项式时间内计算出最佳相关平衡来显着完善这种复杂性阈值。我们表明,例如,当所有机会移动都是公开的时,即两个玩家都会观察到所有机会的动作。这意味着,可以在具有公共机会移动的两人游戏中以多项式的时间在多项式时间内计算出最佳的EFCE,EFCCE和NFCCE,从而提供了十多年来围绕广泛形式相关的最大积极复杂性结果。

Unlike normal-form games, where correlated equilibria have been studied for more than 45 years, extensive-form correlation is still generally not well understood. Part of the reason for this gap is that the sequential nature of extensive-form games allows for a richness of behaviors and incentives that are not possible in normal-form settings. This richness translates to a significantly different complexity landscape surrounding extensive-form correlated equilibria. As of today, it is known that finding an optimal extensive-form correlated equilibrium (EFCE), extensive-form coarse correlated equilibrium (EFCCE), or normal-form coarse correlated equilibrium (NFCCE) in a two-player extensive-form game is computationally tractable when the game does not include chance moves, and intractable when the game involves chance moves. In this paper we significantly refine this complexity threshold by showing that, in two-player games, an optimal correlated equilibrium can be computed in polynomial time, provided that a certain condition is satisfied. We show that the condition holds, for example, when all chance moves are public, that is, both players observe all chance moves. This implies that an optimal EFCE, EFCCE and NFCCE can be computed in polynomial time in the game size in two-player games with public chance moves, providing the biggest positive complexity result surrounding extensive-form correlation in more than a decade.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源