论文标题
乘钟不平等的实验测试
Experimental tests of Multiplicative Bell Inequalities
论文作者
论文摘要
贝尔的不平等是数学构造,它划定了量子和经典物理之间的边界。最近,最近提出了一种新的乘法铃铛不平等(基于两分系统中相关器的产品)。对于这些新的铃铛参数,找到经典和量子(即tsirelson,限制)相对容易。在这里,我们使用极化输入的光子进行不同数量的测量($ n $),通过实验测试这些不平等的TSIRELSON界限,每个方都可以执行。对于$ n = 2、3、4 $,我们报告了对局部隐藏变量理论的实验违规。此外,我们通过实验将结果与从完全确定的策略获得的参数进行比较,并观察到比率的猜想性质。最后,利用“相对论独立性”的原理封装了不确定性关系的局部性,我们从理论上得出并在实验上测试了$ n = 2 $的乘法和添加性铃铛参数的新富度界限。我们的发现增强了局部和非局部相关性之间的对应关系,并可能为量子机械界限的经验检测系统铺平道路。
Bell inequalities are mathematical constructs that demarcate the boundary between quantum and classical physics. A new class of multiplicative Bell inequalities originating from a volume maximization game (based on products of correlators within bipartite systems) has been recently proposed. For these new Bell parameters, it is relatively easy to find the classical and quantum, i.e. Tsirelson, limits. Here, we experimentally test the Tsirelson bounds of these inequalities using polarisation-entangled photons for different number of measurements ($n$), each party can perform. For $n=2, 3, 4$, we report the experimental violation of local hidden variable theories. In addition, we experimentally compare the results with the parameters obtained from a fully deterministic strategy, and observe the conjectured nature of the ratio. Finally, utilizing the principle of "relativistic independence" encapsulating the locality of uncertainty relations, we theoretically derive and experimentally test new richer bounds for both the multiplicative and the additive Bell parameters for $n=2$. Our findings strengthen the correspondence between local and nonlocal correlations, and may pave the way for empirical tests of quantum mechanical bounds with inefficient detection systems.