论文标题
自旋波的时间折射
Time refraction of spin waves
论文作者
论文摘要
我们提出了一项实验研究,该研究是在随时间变化的磁场影响下在微观波导中传播的自旋波的时间折射。使用空间和时间分辨的Brillouin光散射显微镜,我们证明了沿时间坐标的破裂的翻译对称性可用于在传播过程中旋转波的能量或减少自旋波的能量。这允许宽带和可控的自旋波频率变化。使用自旋波导和微观电流线的集成设计,以生成强,纳秒长的磁场脉冲,与光子系统相比,可实现高达39%的载波自旋波频率的转换效率。鉴于磁场脉冲的强度及其对自旋分散剂关系的强大影响,可以在长度尺度上量化时间折射的效果,可与自旋波长相当。此外,我们利用时间折射来激发自旋波爆发,并在纳秒范围内具有脉冲持续时间,并取决于脉冲极性。
We present an experimental study of time refraction of spin waves propagating in microscopic waveguides under the influence of time-varying magnetic fields. Using space- and time-resolved Brillouin light scattering microscopy, we demonstrate that the broken translational symmetry along the time coordinate can be used to in- or decrease the energy of spin waves during their propagation. This allows for a broadband and controllable shift of the spin-wave frequency. Using an integrated design of spin-wave waveguide and microscopic current line for the generation of strong, nanosecond-long, magnetic field pulses, a conversion efficiency up to 39% of the carrier spin-wave frequency is achieved, significantly larger compared to photonic systems. Given the strength of the magnetic field pulses and its strong impact on the spin-wave dispersion relation, the effect of time refraction can be quantified on a length scale comparable to the spin-wave wavelength. Furthermore, we utilize time refraction to excite spin-wave bursts with pulse durations in the nanosecond range and a frequency shift depending on the pulse polarity.