论文标题
具有参数a,b和c的高阶apostol-type poly-Genocchi多项式
Higher Order Apostol-Type Poly-Genocchi Polynomials with Parameters a, b and c
论文作者
论文摘要
在本文中,一种新形式的多基因科多项式是通过多种含量来定义的,即,具有参数a,b和c的较高阶的apostol-type poly-Genocchi多项式。建立了这些多项式的几种特性,包括一些复发关系和显式公式,这些公式表达了这些高阶Apostol-type poly-Genocchi多项式多项式,其第二种是Apostol-type type bernoulli和Frobenius typer typer typer tyners torning norking。此外,获得了某些差异性身份,该身份是将这种新形式的多种多项式多项式归类为appell多项式的新形式,因此,使用Appell多项式上的某些定理绘制了更多属性。此外,引入了具有双重生成函数的这种新形式的多种多项式性多项式的对称概括。最后,使用多指数函数的概念定义了具有参数A,B和C的2型Apostol-Poly-Poly-Poly-Poly-genocchi多项式,并得出了几个身份,其中两个显示了这些多项式与第一类的连接,以及第一种类型的2型Apostol-Apostol-type poly-type poly-Berbernoulili polynoulli polynomials。
In this paper, a new form of poly-Genocchi polynomials is defined by means of poly-logarithm, namely, the Apostol-type poly-Genocchi polynomials of higher order with parameters a, b and c. Several properties of these polynomials are established including some recurrence relations and explicit formulas, which express these higher order Apostol-type poly-Genocchi polynomials in terms of Stirling numbers of the second kind, Apostol-type Bernoulli and Frobenius polynomials of higher order. Moreover, certain differential identity is obtained that leads this new form of poly-Genocchi polynomials to be classified as Appell polynomials and, consequently, draw more properties using some theorems on Appell polynomials. Furthermore, a symmetrized generalization of this new form of poly-Genocchi polynomials is introduced that possesses a double generating function. Finally, the type 2 Apostol-poly-Genocchi polynomials with parameters a, b and c are defined using the concept of polyexponential function and several identities are derived, two of which show the connections of these polynomials with Stirling numbers of the first kind and the type 2 Apostol-type poly-Bernoulli polynomials.