论文标题

关于星形胶质细胞在STDP中的自我修复作用,启用了无监督的SNN

On the Self-Repair Role of Astrocytes in STDP Enabled Unsupervised SNNs

论文作者

Rastogi, Mehul, Lu, Sen, Islam, Nafiul, Sengupta, Abhronil

论文摘要

神经形态计算已成为一种破坏性的计算范式,试图在算法和下一代机器学习平台的算法和硬件设计中模仿大脑的基础结构和功能的各个方面。这项工作超出了当前神经型计算体系结构在神经元和突触的计算模型上的重点,以检查可能有助于认知,尤其是自我修复的生物学大脑的其他计算单元。我们从计算神经科学方面就神经胶质细胞的功能汲取了灵感和见解,并探索了它们在耐断层神经网络(SNNS)(SNNS)中的作用。我们表征了可以在此类网络中启用的自我修复程度,其故障程度从50%-90%不等,并评估了我们对MNIST和时尚持续数据集的建议。

Neuromorphic computing is emerging to be a disruptive computational paradigm that attempts to emulate various facets of the underlying structure and functionalities of the brain in the algorithm and hardware design of next-generation machine learning platforms. This work goes beyond the focus of current neuromorphic computing architectures on computational models for neuron and synapse to examine other computational units of the biological brain that might contribute to cognition and especially self-repair. We draw inspiration and insights from computational neuroscience regarding functionalities of glial cells and explore their role in the fault-tolerant capacity of Spiking Neural Networks (SNNs) trained in an unsupervised fashion using Spike-Timing Dependent Plasticity (STDP). We characterize the degree of self-repair that can be enabled in such networks with varying degree of faults ranging from 50% - 90% and evaluate our proposal on the MNIST and Fashion-MNIST datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源