论文标题

自主无人空中系统的深度学习和强化学习:理论的路线图

Deep Learning and Reinforcement Learning for Autonomous Unmanned Aerial Systems: Roadmap for Theory to Deployment

论文作者

Jagannath, Jithin, Jagannath, Anu, Furman, Sean, Gwin, Tyler

论文摘要

无人空中系统(UAS)越来越多地用于商业,平民和军事应用。当前的UAS最先进仍然取决于具有强大的无线链接的远程人体控制器,以执行其中几个应用程序。缺乏自治限制了可以部署UAS的应用领域和任务。向UAS实现自主权和智力将有助于克服这一障碍,并扩大其使用的使用,提高安全性和效率。在这个数字时代,计算资源的指数增加以及大量数据的可用性导致机器学习从去年冬天开始复兴。因此,在本章中,我们讨论了如何利用机器学习,特别是深度学习和强化学习的一些进步,以开发下一代自主UAS。我们首先通过讨论当前UAS在入门部分中的应用,挑战和机遇来激励本章。然后,我们概述了本章中讨论的一些关键深度学习和强化学习技术。对UAS自治至关重要的关键领域是计算机愿景。因此,我们讨论了如何使用深度学习方法来完成一些有助于提供UAS自治的基本任务。然后,我们讨论如何探索使用此信息来为UAS提供自主控制和导航的探索。接下来,我们为读者提供指示,以选择适当的仿真套件和硬件平台,这些平台将有助于快速原型的UAS基于机器学习的解决方案。我们还讨论了与开发自主UAS解决方案的各个方面有关的开放问题和挑战,以阐明潜在的研究领域。

Unmanned Aerial Systems (UAS) are being increasingly deployed for commercial, civilian, and military applications. The current UAS state-of-the-art still depends on a remote human controller with robust wireless links to perform several of these applications. The lack of autonomy restricts the domains of application and tasks for which a UAS can be deployed. Enabling autonomy and intelligence to the UAS will help overcome this hurdle and expand its use improving safety and efficiency. The exponential increase in computing resources and the availability of large amount of data in this digital era has led to the resurgence of machine learning from its last winter. Therefore, in this chapter, we discuss how some of the advances in machine learning, specifically deep learning and reinforcement learning can be leveraged to develop next-generation autonomous UAS. We first begin motivating this chapter by discussing the application, challenges, and opportunities of the current UAS in the introductory section. We then provide an overview of some of the key deep learning and reinforcement learning techniques discussed throughout this chapter. A key area of focus that will be essential to enable autonomy to UAS is computer vision. Accordingly, we discuss how deep learning approaches have been used to accomplish some of the basic tasks that contribute to providing UAS autonomy. Then we discuss how reinforcement learning is explored for using this information to provide autonomous control and navigation for UAS. Next, we provide the reader with directions to choose appropriate simulation suites and hardware platforms that will help to rapidly prototype novel machine learning based solutions for UAS. We additionally discuss the open problems and challenges pertaining to each aspect of developing autonomous UAS solutions to shine light on potential research areas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源