论文标题
Stieltjes常数是不合理的吗?一些计算机实验
Are the Stieltjes constants irrational? Some computer experiments
论文作者
论文摘要
Khnichin的定理是一个令人惊讶的,但仍然相对鲜为人知的结果。它可以用作确定任何给定数字是否不合理的特定标准。在本文中,我们将该定理以及高斯定理应用于数千个高精度(多达53000个重要数字)的初始stieltjes常数$γ_{n} $,$ n = 0,1,...,5000美元,5000美元,以确认,通常是bare,他们是不合理的,甚至是跨性别的(甚至是跨性别的)。我们还研究了这些重要常数的正态性。
Khnichin's theorem is a surprising and still relatively little known result. It can be used as a specific criterion for determining whether or not any given number is irrational. In this paper we apply this theorem as well as the Gauss--Kuzmin theorem to several thousand high precision (up to more than 53000 significant digits) initial Stieltjes constants $γ_{n}$, $n=0,1,...,5000$ in order to confirm that, as is commonly believed, they are irrational numbers (and even transcendental). We study also the normality of these important constants.