论文标题

凸形域和Annuli的晶格点差异的较高矩

Higher Moments for Lattice Point Discrepancy of Convex Domains and Annuli

论文作者

Wu, Xiaorun

论文摘要

给定一个域$ω\ subseteq \ mathbb {r}^2 $,令$ \ mathcal {d}(ω,x,x,r)$是$ \ mathbb {z}^2 $ in $ r \ ge 1 $和$ r \ ge 1 $ and $ x $ $ r \ ge $ nmin \ n mar}的晶格点的数量$$ \ MATHCAL {d}(ω,x,r)= \#\ {(j,k)\ in \ mathbb {z}^2 :( j-x_1,k-x_2),k-x_2)\ inRΩ $ \ int _ {\ mathbb {t}^2} | \ mathcal {d}(ω,x,r)|^pdx $ $ p $ - 差异函数$ \ mathcal {d} $的$ p $ - Huxley在2014年表明,对于具有足够光滑边界的凸域,$ \ Mathcal {d} $的第四刻由$ \ Mathcal {O}(R^2 \ log R)界限,2019年,Colzani,Gariboldi,Gariboldi和Gigante将其扩展到更高的维度。在本文中,我们的贡献是双重的:首先,我们提供了赫x黎2014年结果的简单直接证明;其次,我们建立了$ p $ p $ thtice点的新估算值,radius $ r $的晶格点差异和任何固定的厚度$ 0 <t <1 $ for $ p \ ge 2。

Given a domain $Ω\subseteq \mathbb{R}^2$, let $\mathcal{D}(Ω,x,R)$ be the number of lattice points from $\mathbb{Z}^2$ in $RΩ-x$, for $R \ge 1$ and $x\in \mathbb{T}^2$, minus the area of $RΩ$: $$\mathcal{D}(Ω,x,R) = \# \{ (j,k) \in \mathbb{Z}^2 :(j-x_1,k-x_2) \in RΩ\} - R^2|Ω|.$$ We call $\int_{\mathbb{T}^2}|\mathcal{D}(Ω,x,R)|^pdx$ the $p$-th moment of the discrepancy function $\mathcal{D}$. In 2014, Huxley showed that for convex domains with sufficiently smooth boundary, the fourth moment of $\mathcal{D}$ is bounded by $\mathcal{O}(R^2\log R)$, and in 2019, Colzani, Gariboldi and Gigante extended this result to higher dimensions. In this paper, our contribution is twofold: first, we present a simple direct proof of Huxley's 2014 result; second, we establish new estimates for the $p$-th moments of lattice point discrepancy of annuli of radius $R$, and any fixed thickness $0<t<1$ for $p\ge 2.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源