论文标题
$ \ mathrm {rcd}(k,n)$ space and应用程序的Talenti-Type比较定理
A Talenti-type comparison theorem for $\mathrm{RCD}(K,N)$ spaces and applications
论文作者
论文摘要
我们证明了点重点,$ l^{p} $ - 梯度比较结果的椭圆形dirichlet问题的解决方案在具有正ricci曲率的(可能是非平滑的)空间的开放子集上定义了($ \ mathrm {rcd}(rcd}(k,k,n)$ nmetric Memalric Mature Space,$ k> $ n $ n $ $ n \ f。就$ l^{2} $/测量的Gromov-Hausdorff拓扑而言,获得的Talenti-Type比较是锋利,僵化和稳定的;此外,即使对于平滑的里曼尼亚人歧管,几个方面似乎都是新的。作为这种Talenti-Type比较的应用,我们证明了一系列改进的Sobolev型不平等,以及St.最后,就布朗运动的开放子集的退出时间而言,我们给出了上述比较结果的概率解释(在平滑的riemannian歧管的情况下)。
We prove pointwise and $L^{p}$-gradient comparison results for solutions to elliptic Dirichlet problems defined on open subsets of a (possibly non-smooth) space with positive Ricci curvature (more precisely of an $\mathrm{RCD}(K,N)$ metric measure space, with $K>0$ and $N\in (1,\infty)$). The obtained Talenti-type comparison is sharp, rigid and stable with respect to $L^{2}$/measured-Gromov-Hausdorff topology; moreover, several aspects seem new even for smooth Riemannian manifolds. As applications of such Talenti-type comparison, we prove a series of improved Sobolev-type inequalities, and an $\mathrm{RCD}$ version of the St.~Venant-Pólya torsional rigidity comparison theorem (with associated rigidity and stability statements). Finally, we give a probabilistic interpretation (in the setting of smooth Riemannian manifolds) of the aforementioned comparison results, in terms of exit time from an open subset for the Brownian motion.