论文标题

$ \ mathrm {rcd}(k,n)$ space and应用程序的Talenti-Type比较定理

A Talenti-type comparison theorem for $\mathrm{RCD}(K,N)$ spaces and applications

论文作者

Mondino, Andrea, Vedovato, Mattia

论文摘要

我们证明了点重点,$ l^{p} $ - 梯度比较结果的椭圆形dirichlet问题的解决方案在具有正ricci曲率的(可能是非平滑的)空间的开放子集上定义了($ \ mathrm {rcd}(rcd}(k,k,n)$ nmetric Memalric Mature Space,$ k> $ n $ n $ $ n \ f。就$ l^{2} $/测量的Gromov-Hausdorff拓扑而言,获得的Talenti-Type比较是锋利,僵化和稳定的;此外,即使对于平滑的里曼尼亚人歧管,几个方面似乎都是新的。作为这种Talenti-Type比较的应用,我们证明了一系列改进的Sobolev型不平等,以及St.最后,就布朗运动的开放子集的退出时间而言,我们给出了上述比较结果的概率解释(在平滑的riemannian歧管的情况下)。

We prove pointwise and $L^{p}$-gradient comparison results for solutions to elliptic Dirichlet problems defined on open subsets of a (possibly non-smooth) space with positive Ricci curvature (more precisely of an $\mathrm{RCD}(K,N)$ metric measure space, with $K>0$ and $N\in (1,\infty)$). The obtained Talenti-type comparison is sharp, rigid and stable with respect to $L^{2}$/measured-Gromov-Hausdorff topology; moreover, several aspects seem new even for smooth Riemannian manifolds. As applications of such Talenti-type comparison, we prove a series of improved Sobolev-type inequalities, and an $\mathrm{RCD}$ version of the St.~Venant-Pólya torsional rigidity comparison theorem (with associated rigidity and stability statements). Finally, we give a probabilistic interpretation (in the setting of smooth Riemannian manifolds) of the aforementioned comparison results, in terms of exit time from an open subset for the Brownian motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源