论文标题

深度神经体系结构失去信息吗?可逆性是必不可少的

Are Deep Neural Architectures Losing Information? Invertibility Is Indispensable

论文作者

Liu, Yang, Qin, Zhenyue, Anwar, Saeed, Caldwell, Sabrina, Gedeon, Tom

论文摘要

自Alexnet出现以来,为不同任务设计新颖的深层神经体系结构一直是一个富有成效的研究方向。尽管在实践中各种架构的表现出色,但我们研究了一个理论问题:深神经体系结构保留输入数据的所有信息的条件是什么?确定深层神经体系结构的无损信息条件很重要,因为诸如图像恢复之类的任务需要尽可能多地保留输入数据的详细信息。使用相互信息的定义,我们显示:当且仅当架构可逆时,深层神经体系结构才能保留有关给定数据的最大细节。我们通过将其与竞争性模型与三个扰动的图像恢复任务进行比较,验证可逆恢复自动编码器(IRAE)网络的优势:图像DENOISIS,JPEG图像减压和图像插入图像。实验结果表明,IRAE的表现始终优于不可逆转的结果。我们的模型甚至包含更少的参数。因此,可能值得尝试替换深神经体系结构的标准组件,例如残留块和relu,并及其可逆性对应物。我们相信我们的工作为未来的深度学习研究提供了独特的观点和方向。

Ever since the advent of AlexNet, designing novel deep neural architectures for different tasks has consistently been a productive research direction. Despite the exceptional performance of various architectures in practice, we study a theoretical question: what is the condition for deep neural architectures to preserve all the information of the input data? Identifying the information lossless condition for deep neural architectures is important, because tasks such as image restoration require keep the detailed information of the input data as much as possible. Using the definition of mutual information, we show that: a deep neural architecture can preserve maximum details about the given data if and only if the architecture is invertible. We verify the advantages of our Invertible Restoring Autoencoder (IRAE) network by comparing it with competitive models on three perturbed image restoration tasks: image denoising, jpeg image decompression and image inpainting. Experimental results show that IRAE consistently outperforms non-invertible ones. Our model even contains far fewer parameters. Thus, it may be worthwhile to try replacing standard components of deep neural architectures, such as residual blocks and ReLU, with their invertible counterparts. We believe our work provides a unique perspective and direction for future deep learning research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源