论文标题

从多对比度MRI的多组织分割的半监督深度学习

Semi-Supervised Deep Learning for Multi-Tissue Segmentation from Multi-Contrast MRI

论文作者

Anwar, Syed Muhammad, Irmakci, Ismail, Torigian, Drew A., Jambawalikar, Sachin, Papadakis, Georgios Z., Akgun, Can, Akcakaya, Mehmet, Bagci, Ulas

论文摘要

从磁共振成像(MRI)扫描中对大腿组织(肌肉,脂肪,肌肉间脂肪组织(IMAT),骨髓和骨髓)进行分割,可用于在各种情况下进行临床和研究研究,例如衰老,糖尿病,糖尿病,肥胖,肥胖,代谢综合征和其相关的稳定性。朝着对大腿组织的全自动,健壮和精确的定量,在这里,我们基于深层网络体系结构设计了一种新型的半监督分割算法。我们提出的深网基于提拉米苏分割引擎,使用变异和专门设计的靶向辍学,以更快,强大的收敛性,并利用多对比度MRI扫描作为输入数据。在我们的实验中,我们使用了来自巴尔的摩纵向研究(BLSA)的50个不同受试者的150次扫描。提议的系统利用具有高疗效的标记和未标记数据,并胜过当前的最新方法,其骰子得分为97.52%,94.61%,80.14%,95.93%和96.83%的肌肉,脂肪,脂肪,脂肪,IMAT,IMAT,IMAT,BOON,BOON,BOON,BOON,BOON,BOON,BOON,BOON,BOON,BOON,BOON,BOON,BOOND MARROW,分别是96.83%。我们的结果表明,所提出的系统对于临床研究很有用,在临床研究中,体积和分布组织定量是关键的,并且标记是一个重要的问题。据我们所知,提出的系统是使用单端到端半监督的深度学习深度学习框架进行多组织分割的首次尝试,用于多对比度大腿MRI扫描。

Segmentation of thigh tissues (muscle, fat, inter-muscular adipose tissue (IMAT), bone, and bone marrow) from magnetic resonance imaging (MRI) scans is useful for clinical and research investigations in various conditions such as aging, diabetes mellitus, obesity, metabolic syndrome, and their associated comorbidities. Towards a fully automated, robust, and precise quantification of thigh tissues, herein we designed a novel semi-supervised segmentation algorithm based on deep network architectures. Built upon Tiramisu segmentation engine, our proposed deep networks use variational and specially designed targeted dropouts for faster and robust convergence, and utilize multi-contrast MRI scans as input data. In our experiments, we have used 150 scans from 50 distinct subjects from the Baltimore Longitudinal Study of Aging (BLSA). The proposed system made use of both labeled and unlabeled data with high efficacy for training, and outperformed the current state-of-the-art methods with dice scores of 97.52%, 94.61%, 80.14%, 95.93%, and 96.83% for muscle, fat, IMAT, bone, and bone marrow tissues, respectively. Our results indicate that the proposed system can be useful for clinical research studies where volumetric and distributional tissue quantification is pivotal and labeling is a significant issue. To the best of our knowledge, the proposed system is the first attempt at multi-tissue segmentation using a single end-to-end semi-supervised deep learning framework for multi-contrast thigh MRI scans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源