论文标题

一维平铺空间上的旋转数字和旋转类

Rotation numbers and rotation classes on one-dimensional tiling spaces

论文作者

Aliste-Prieto, José, Rand, Betseygail, Sadun, Lorenzo

论文摘要

我们将圆形图的旋转理论扩展到瓷砖空间。具体而言,我们考虑一个具有有限局部复杂性和研究的一维平铺空间$ω$ 自动地图$ f $符合身份,其位移强烈的模式(SPE)。代替熟悉的旋转编号,我们定义了同时的$ [μ] $。我们证明了这一类的存在和独特性结果,发展了非理性的概念,并证明了Poncaré定理的类似物:如果$ [μ$是非理性的,那么$ f $是在$ω______________________________________$上的均匀翻译上的均匀翻译。在这种情况下,$ f $是$ω$本身的半偶联到均匀翻译,并且只有$ [μ] $才在于$ω$的第一个同胞组的某个子空间。

We extend rotation theory of circle maps to tiling spaces. Specifically, we consider a 1-dimensional tiling space $Ω$ with finite local complexity and study self-maps $F$ that are homotopic to the identity and whose displacements are strongly pattern equivariant (sPE). In place of the familiar rotation number we define a cohomology class $[μ]$. We prove existence and uniqueness results for this class, develop a notion of irrationality, and prove an analogue of Poncaré's Theorem: If $[μ]$ is irrational, then $F$ is semi-conjugate to uniform translation on a space $Ω_μ$ of tilings that is homeomorphic to $Ω$. In such cases, $F$ is semi-conjugate to uniform translation on $Ω$ itself if and only if $[μ]$ lies in a certain subspace of the first cohomology group of $Ω$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源