论文标题

带有FPA模块的轻重量对象检测框架用于光学遥感图像

A Light-Weight Object Detection Framework with FPA Module for Optical Remote Sensing Imagery

论文作者

Gu, Xi, Kong, Lingbin, Wang, Zhicheng, Li, Jie, Yu, Zhaohui, Wei, Gang

论文摘要

随着遥感技术的开发,遥感图像的采集变得越来越容易,这为检测遥感对象的任务提供了足够的数据资源。但是,如何从许多复杂的光学遥感图像中快速准确地检测对象是一个具有挑战性的热门问题。在本文中,我们提出了一个有效的无锚定对象检测器Centerfpanet。为了提高速度,我们使用轻质的骨干,并引入不对称的革命块。为了提高准确性,我们设计了FPA模块,该模块链接了不同级别的特征图,并引入了注意机制,以动态调整每个特征图级别的重量,这解决了由遥感对象的较大尺寸范围造成的检测困难问题。此策略可以提高遥感图像对象检测的准确性,而无需降低检测速度。在DOTA数据集上,CenterFpanet地图为64.00%,FPS为22.2,它接近当前使用的基于锚的方法的准确性,并且比它们快得多。与更快的RCNN相比,MAP降低了6.76%,但更快60.87%。总而言之,CenterFpanet在大规模光学遥感对象检测中实现了速度和准确性之间的平衡。

With the development of remote sensing technology, the acquisition of remote sensing images is easier and easier, which provides sufficient data resources for the task of detecting remote sensing objects. However, how to detect objects quickly and accurately from many complex optical remote sensing images is a challenging hot issue. In this paper, we propose an efficient anchor free object detector, CenterFPANet. To pursue speed, we use a lightweight backbone and introduce the asymmetric revolution block. To improve the accuracy, we designed the FPA module, which links the feature maps of different levels, and introduces the attention mechanism to dynamically adjust the weights of each level of feature maps, which solves the problem of detection difficulty caused by large size range of remote sensing objects. This strategy can improve the accuracy of remote sensing image object detection without reducing the detection speed. On the DOTA dataset, CenterFPANet mAP is 64.00%, and FPS is 22.2, which is close to the accuracy of the anchor-based methods currently used and much faster than them. Compared with Faster RCNN, mAP is 6.76% lower but 60.87% faster. All in all, CenterFPANet achieves a balance between speed and accuracy in large-scale optical remote sensing object detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源