论文标题
在开放的多代理系统中建模八卦互动
Modelling Gossip Interactions in Open Multi-Agent Systems
论文作者
论文摘要
我们考虑开放的多机构系统,这些系统是在研究过程发生时频繁到达的系统。我们研究了此类开放系统中所有对所有成对八卦相互作用的行为。代理的到达和出发表明,系统的组成和大小随时间而发展,尤其是防止收敛。我们通过表明尺寸固定尺寸的线性动力学系统的特征来描述数据无关数量的演变来描述系统的预期行为。我们应用这种方法来表征固定和可变大小的开放系统的两个第一矩(以及方差)的演变。我们的方法基于影响系统的随机异步事件的连续时间建模(八卦步骤,到达,出发和替换),并且可以扩展到其他类型的事件。
We consider open multi-agent systems, which are systems subject to frequent arrivals and departures of agents while the studied process takes place. We study the behavior of all-to-all pairwise gossip interactions in such open systems. Arrivals and departures of agents imply that the composition and size of the system evolve with time, and in particular prevent convergence. We describe the expected behavior of the system by showing that the evolution of scale-independent quantities can be characterized exactly by a fixed-size linear dynamical system. We apply this approach to characterize the evolution of the two first moments (and thus also of the variance) for open systems of fixed and variable size. Our approach is based on the continuous-time modelling of random asynchronous events impacting the systems (gossip steps, arrivals, departures, and replacements), and can be extended to other types of events.