论文标题

使用低级张量格式进行肌电图的贝叶斯反演

Bayesian inversion for electromyography using low-rank tensor formats

论文作者

Rörich, Anna, Werthmann, Tim A., Göddeke, Dominik, Grasedyck, Lars

论文摘要

使用肌电图数据对生物组织结构的重建是一种非侵入性成像方法,具有不同的医学应用。从数学上讲,此过程是一个反问题。此外,肌电图数据对描述组织结构的电导率变化非常敏感。将不可避免的测量误差作为随机数量建模会导致贝叶斯方法。解决离散的贝叶斯分离问题是指从参数的后验分布中绘制样品,例如电导率,给定测量数据。使用,例如,用于此目的的大都市杂货算法涉及解决需要高度计算工作的不同参数组合的正向问题。低量张量格式可以通过同时提供所有发生的方程式系统的数据 - 比较表示,并允许其有效的解决方案来减少这项工作。贝叶斯定理的应用证明了贝叶斯分散问题的良好性。向前问题的低级别表示的推导和证明允许在某些假设下的所有解决方案的所有解决方案的先例,从而产生有效且基于理论的采样算法。数值实验支持理论结果,但也表明需要大量样本来获得参数的可靠估计。使用张量格式的预算向前解的大都市杂货采样算法绘制了大量样本,因此可以解决使用经典方法不可行的解决问题。

The reconstruction of the structure of biological tissue using electromyographic data is a non-invasive imaging method with diverse medical applications. Mathematically, this process is an inverse problem. Furthermore, electromyographic data are highly sensitive to changes in the electrical conductivity that describes the structure of the tissue. Modeling the inevitable measurement error as a stochastic quantity leads to a Bayesian approach. Solving the discretized Bayes-inverse problem means drawing samples from the posterior distribution of parameters, e.g., the conductivity, given measurement data. Using, e.g., a Metropolis-Hastings algorithm for this purpose involves solving the forward problem for different parameter combinations which requires a high computational effort. Low-rank tensor formats can reduce this effort by providing a data-sparse representation of all occurring linear systems of equations simultaneously and allow for their efficient solution. The application of Bayes' theorem proves the well-posedness of the Bayes-inverse problem. The derivation and proof of a low-rank representation of the forward problem allow for the precomputation of all solutions of this problem under certain assumptions, resulting in an efficient and theory-based sampling algorithm. Numerical experiments support the theoretical results, but also indicate that a high number of samples is needed to obtain reliable estimates for the parameters. The Metropolis-Hastings sampling algorithm, using the precomputed forward solution in a tensor format, draws this high number of samples and therefore enables solving problems which are infeasible using classical methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源