论文标题

塔图稳定和晶格路径

Tableau Stabilization and Lattice Paths

论文作者

Ahlbach, Connor, David, Jacob, Oh, Suho, Wu, Christopher

论文摘要

如果将偏斜图表的副本附加到自身的右侧并进行纠正,则在某个时刻,副本不再体验垂直滑梯,这是一种称为Tableau稳定的现象。虽然最初开发了Tableau稳定功能,以构建通过给定促销功能固定的足够大的矩形图表,但本文的目的是改善对Tableau稳定的原始结合到斜面图的行数。为了证明这种结合,我们将增加子序列编码为晶格路径,并表明这些晶格路径上的各种操作都弱增加了增加子序列的最大组合长度。

If one attaches shifted copies of a skew tableau to the right of itself and rectifies, at a certain point the copies no longer experience vertical slides, a phenomenon called tableau stabilization. While tableau stabilization was originally developed to construct the sufficiently large rectangular tableaux fixed by given powers of promotion, the purpose of this paper is to improve the original bound on tableau stabilization to the number of rows of the skew tableau. In order to prove this bound, we encode increasing subsequences as lattice paths and show that various operations on these lattice paths weakly increase the maximum combined length of the increasing subsequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源