论文标题

通过跨刻画成对学习在稀疏域中检测用户社区

Detecting User Community in Sparse Domain via Cross-Graph Pairwise Learning

论文作者

Gao, Zheng, Li, Hongsong, Jiang, Zhuoren, Liu, Xiaozhong

论文摘要

网络空间托管用户与不同类型的对象之间的丰富交互,它们的关系通常被封装为两部分图。在这种异质图中检测用户社区是发现用户信息需求并进一步增强建议性能的必不可少的任务。不幸的是,虽然几个携带高质量图的主要网络域可能很少。但是,由于用户可能会出现在多个域(图)中,因此他们在主要域中的高质量活动可以在稀疏的域中提供社区检测,例如,当Google上的用户行为可以帮助数千个应用程序在使用Google ID登录这些应用程序时找到其当地社区。在本文中,我们的模型,成对的跨界社区检测(PCCD),提议通过涉及外部图知识来解决稀疏的图形问题,以学习用户成对社区的亲密关系而不是检测直接社区。尤其是在我们的模型中,为避免获取过多的传播信息,使用社区和节点级过滤器的两级过滤模块可选择最有用的连接。随后,社区经常性单元(CRU)旨在估计成对用户社区的亲密关系。在两个现实世界图数据集上进行的广泛实验验证了我们的模型,可针对几种强大的替代方案进行验证。补充实验还验证了其在不同稀疏度尺度的图表上的鲁棒性。

Cyberspace hosts abundant interactions between users and different kinds of objects, and their relations are often encapsulated as bipartite graphs. Detecting user community in such heterogeneous graphs is an essential task to uncover user information needs and to further enhance recommendation performance. While several main cyber domains carrying high-quality graphs, unfortunately, most others can be quite sparse. However, as users may appear in multiple domains (graphs), their high-quality activities in the main domains can supply community detection in the sparse ones, e.g., user behaviors on Google can help thousands of applications to locate his/her local community when s/he uses Google ID to login those applications. In this paper, our model, Pairwise Cross-graph Community Detection (PCCD), is proposed to cope with the sparse graph problem by involving external graph knowledge to learn user pairwise community closeness instead of detecting direct communities. Particularly in our model, to avoid taking excessive propagated information, a two-level filtering module is utilized to select the most informative connections through both community and node level filters. Subsequently, a Community Recurrent Unit (CRU) is designed to estimate pairwise user community closeness. Extensive experiments on two real-world graph datasets validate our model against several strong alternatives. Supplementary experiments also validate its robustness on graphs with varied sparsity scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源