论文标题

贝叶斯信息理论校准患者特异性放射疗法灵敏度参数,以告知癌症的有效扫描方案

Bayesian information-theoretic calibration of patient-specific radiotherapy sensitivity parameters for informing effective scanning protocols in cancer

论文作者

Cho, Heyrim, Lewis, Allison L., Storey, Kathleen M.

论文摘要

随着技术的新进步,现在可以收集描述肿瘤生长的各种不同指标的数据,包括肿瘤的体积,成分和血管等。对于任何提出的肿瘤生长和治疗模型,我们都会观察到个别患者的参数值的差异很大,尤其是与治疗反应有关的参数。因此,利用这些各种指标用于模型校准有助于准确和早期推断出此类患者特异性参数,以便可以将治疗方案调整为中途道路,以获得最大的疗效。但是,进行测量可能是昂贵和侵入性的,将临床医生限制在稀疏的收集时间表中。因此,确定最佳时间和收集数据以最好地告知适当治疗方案的最佳指标和指标可能会为临床医生提供极大的帮助。在这项研究中,我们采用贝叶斯信息理论校准方案进行实验设计,以确定收集数据以告知治疗参数的最佳时间。在此过程中,选择数据收集时间以最大程度地减少参数不确定性的减少,以确保预算的预算为$ n $ high-fidelity实验测量结果,从而导致有关低获取性模型参数值的最大信息增益。除了研究数据收集的最佳时间模式外,我们还开发了一个框架,以确定在每个数据收集点应使用哪些指标。我们用各种玩具示例来说明这个框架,每个玩具示例都使用放射疗法治疗方案。对于每种情况,我们分析了低保真模型对测量预算的预测能力的依赖性。

With new advancements in technology, it is now possible to collect data for a variety of different metrics describing tumor growth, including tumor volume, composition, and vascularity, among others. For any proposed model of tumor growth and treatment, we observe large variability among individual patients' parameter values, particularly those relating to treatment response; thus, exploiting the use of these various metrics for model calibration can be helpful to infer such patient-specific parameters both accurately and early, so that treatment protocols can be adjusted mid-course for maximum efficacy. However, taking measurements can be costly and invasive, limiting clinicians to a sparse collection schedule. As such, the determination of optimal times and metrics for which to collect data in order to best inform proper treatment protocols could be of great assistance to clinicians. In this investigation, we employ a Bayesian information-theoretic calibration protocol for experimental design in order to identify the optimal times at which to collect data for informing treatment parameters. Within this procedure, data collection times are chosen sequentially to maximize the reduction in parameter uncertainty with each added measurement, ensuring that a budget of $n$ high-fidelity experimental measurements results in maximum information gain about the low-fidelity model parameter values. In addition to investigating the optimal temporal pattern for data collection, we also develop a framework for deciding which metrics should be utilized at each data collection point. We illustrate this framework with a variety of toy examples, each utilizing a radiotherapy treatment regimen. For each scenario, we analyze the dependence of the predictive power of the low-fidelity model upon the measurement budget.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源