论文标题
从多个数据集中学习具有异构和部分标签,用于CT中的通用病变检测
Learning from Multiple Datasets with Heterogeneous and Partial Labels for Universal Lesion Detection in CT
论文作者
论文摘要
需要具有高质量标签的大规模数据集用于培训准确的深度学习模型。但是,由于注释成本,医学成像中的数据集通常是部分标记或小的。例如,Deeplosion是具有各种类型病变的大规模CT图像数据集,但也有许多未标记的病变(缺少注释)。当在部分标记的数据集上训练病变检测器时,丢失的注释会产生错误的负面信号并降低性能。除了深层外,还有几个小型单型数据集,例如用于肺结节的Luna和用于肝肿瘤的LITS。这些数据集具有异质标签示波器,即不同的病变类型在不同的数据集中标记,而其他类型却被忽略了。在这项工作中,我们旨在开发一种普遍的病变检测算法来检测各种病变。解决了异质和部分标签的问题。首先,我们构建了一个简单而有效的病变检测框架,称为病变集合(镜头)。镜头可以以多任务的方式从多个异质性病变数据集中有效学习,并通过提案融合利用其协同作用。接下来,我们提出策略,通过利用临床先验知识和跨数据库知识转移来挖掘部分标记数据集的缺失注释。最后,我们在四个公共病变数据集上训练我们的框架,并在Deeplesion中对800个手动标记的子0al卷进行评估。与当前的平均灵敏度指标相比,我们的方法的相对提高49%。我们已在https://github.com/viggin/deeplesion_manual_test_set中公开发布了深度计算的手册3D注释。
Large-scale datasets with high-quality labels are desired for training accurate deep learning models. However, due to the annotation cost, datasets in medical imaging are often either partially-labeled or small. For example, DeepLesion is such a large-scale CT image dataset with lesions of various types, but it also has many unlabeled lesions (missing annotations). When training a lesion detector on a partially-labeled dataset, the missing annotations will generate incorrect negative signals and degrade the performance. Besides DeepLesion, there are several small single-type datasets, such as LUNA for lung nodules and LiTS for liver tumors. These datasets have heterogeneous label scopes, i.e., different lesion types are labeled in different datasets with other types ignored. In this work, we aim to develop a universal lesion detection algorithm to detect a variety of lesions. The problem of heterogeneous and partial labels is tackled. First, we build a simple yet effective lesion detection framework named Lesion ENSemble (LENS). LENS can efficiently learn from multiple heterogeneous lesion datasets in a multi-task fashion and leverage their synergy by proposal fusion. Next, we propose strategies to mine missing annotations from partially-labeled datasets by exploiting clinical prior knowledge and cross-dataset knowledge transfer. Finally, we train our framework on four public lesion datasets and evaluate it on 800 manually-labeled sub-volumes in DeepLesion. Our method brings a relative improvement of 49% compared to the current state-of-the-art approach in the metric of average sensitivity. We have publicly released our manual 3D annotations of DeepLesion in https://github.com/viggin/DeepLesion_manual_test_set.