论文标题
最大融合U-NET,用于多模式病理学分割,注意力和动态重采样
Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention and Dynamic Resampling
论文作者
论文摘要
自动分割多序列(多模式)心脏MR(CMR)图像在各种心脏病的诊断和管理中起重要作用。但是,相关算法的性能受到多模式信息的适当融合的显着影响。此外,特定的疾病,例如心肌梗塞,在图像上显示不规则的形状,并在随机位置占据小区域。这些事实使多模式CMR图像的病理分割成为具有挑战性的任务。在本文中,我们提出了最大融合的U-NET,该网络可在LGE,T2加权和BSSFP模态的对齐的多模式图像中获得改进的病理分割性能。具体而言,特定于模式的特征是由专用编码器提取的。然后,它们与像素的最大运算符融合在一起。连同相应的编码功能,这些表示形式可以传播到用U-NET跳过连接的解码层。此外,在最后一个解码层中应用了一个空间意见模块,以鼓励网络专注于那些触发网络神经元反应相对较高反应的那些小小的语义有意义的病理区域。我们还使用简单的图像补丁提取策略来动态重新采样训练示例,其空间和批量大小。由于GPU的记忆力有限,该策略减少了类别的失衡,并迫使模型专注于围绕感兴趣的病理的区域。它进一步提高了细分精度并减少了病理的错误分类。我们使用心肌病理分割(Myops)评估我们的方法,结合了涉及三种方式的多序列CMR数据集。广泛的实验证明了提出的模型的有效性,该模型表现优于相关基线。
Automatic segmentation of multi-sequence (multi-modal) cardiac MR (CMR) images plays a significant role in diagnosis and management for a variety of cardiac diseases. However, the performance of relevant algorithms is significantly affected by the proper fusion of the multi-modal information. Furthermore, particular diseases, such as myocardial infarction, display irregular shapes on images and occupy small regions at random locations. These facts make pathology segmentation of multi-modal CMR images a challenging task. In this paper, we present the Max-Fusion U-Net that achieves improved pathology segmentation performance given aligned multi-modal images of LGE, T2-weighted, and bSSFP modalities. Specifically, modality-specific features are extracted by dedicated encoders. Then they are fused with the pixel-wise maximum operator. Together with the corresponding encoding features, these representations are propagated to decoding layers with U-Net skip-connections. Furthermore, a spatial-attention module is applied in the last decoding layer to encourage the network to focus on those small semantically meaningful pathological regions that trigger relatively high responses by the network neurons. We also use a simple image patch extraction strategy to dynamically resample training examples with varying spacial and batch sizes. With limited GPU memory, this strategy reduces the imbalance of classes and forces the model to focus on regions around the interested pathology. It further improves segmentation accuracy and reduces the mis-classification of pathology. We evaluate our methods using the Myocardial pathology segmentation (MyoPS) combining the multi-sequence CMR dataset which involves three modalities. Extensive experiments demonstrate the effectiveness of the proposed model which outperforms the related baselines.