论文标题

用于提高XL-MIMO系统能源效率的天线选择

Antenna Selection for Improving Energy Efficiency in XL-MIMO Systems

论文作者

Marinello, José Carlos, Abrão, Taufik, Amiri, Abolfazl, de Carvalho, Elisabeth, Popovski, Petar

论文摘要

我们考虑最近提出的大型超级量表大量多输入多输出(XL-MIMO)系统,其中数百个天线服务于少数用户。由于数组长度与与用户的距离的顺序相同,因此给定用户的长期褪色系数随基站(BS)的不同天线而变化。因此,某些天线传输的信号可能与其他某些传输的信号更大。从绿色的角度来看,同时激活数百甚至数千个天线是无效的,因为活性天线的渴望射频频率(RF)链大大增加了总能量消耗。此外,大量选定的天线增加了线性处理所需的功率,例如预编码矩阵计算和短期通道估计。在本文中,我们提出了四种旨在最大化总能源效率(EE)的XL-MIMO系统中的四种天线选择(AS)。此外,采用一些简化的假设,我们为XL-MIMO系统的EE提供了封闭形式的分析表达式,并提出了一种直接的迭代方法,以确定能够最大化它的选定天线的最佳数量。提出的作为方案仅基于长期褪色参数,因此,所选天线集在相对较大的时间/频率间隔中仍然有效。比较结果,我们发现基于方案的遗传算法通常可以实现最佳的EE性能,尽管我们提出的最高标准化接收的功率作为方案也以简单明了的方式实现了非常有希望的EE性能。

We consider the recently proposed extra-large scale massive multiple-input multiple-output (XL-MIMO) systems, with some hundreds of antennas serving a smaller number of users. Since the array length is of the same order as the distance to the users, the long-term fading coefficients of a given user vary with the different antennas at the base station (BS). Thus, the signal transmitted by some antennas might reach the user with much more power than that transmitted by some others. From a green perspective, it is not effective to simultaneously activate hundreds or even thousands of antennas, since the power-hungry radio frequency (RF) chains of the active antennas increase significantly the total energy consumption. Besides, a larger number of selected antennas increases the power required by linear processing, such as precoding matrix computation, and short-term channel estimation. In this paper, we propose four antenna selection (AS) approaches to be deployed in XL-MIMO systems aiming at maximizing the total energy efficiency (EE). Besides, employing some simplifying assumptions, we derive a closed-form analytical expression for the EE of the XL-MIMO system, and propose a straightforward iterative method to determine the optimal number of selected antennas able to maximize it. The proposed AS schemes are based solely on long-term fading parameters, thus, the selected antennas set remains valid for a relatively large time/frequency intervals. Comparing the results, we find that the genetic-algorithm based AS scheme usually achieves the best EE performance, although our proposed highest normalized received power AS scheme also achieves very promising EE performance in a simple and straightforward way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源