论文标题

最佳确定性组测试算法以估计缺陷的数量

Optimal Deterministic Group Testing Algorithms to Estimate the Number of Defectives

论文作者

Bshouty, Nader H., Haddad-Zaknoon, Catherine A.

论文摘要

我们研究了使用确定性组测试算法估算$ n $元素$ n $元素中$ n $元素中$ n $元素中有缺陷的项目数量的问题。我们在自适应和非自适应确定性设置中所需的测试数量和上限上的上限和上限为上限,从而给出了上限$ d $。对于自适应确定性设置,我们的结果表明,估算损失数量为$δ$的任何算法都必须使至少$ω\ left(((d/δ^2)\ log(n/d)\ log(n/d)\ right)$测试。对于非自适应算法,这扩展了在\ cite {ala17}中实现的相同下限。此外,我们给出了多项式时间自适应算法,该算法表明我们的界限紧密到小附加项。 对于非自适应算法,$ O((d/δ^2)$ $(\ log(n/d)+\logΔ))的上限是通过非构造证明实现的。这改善了从\ cite {ala17}的下限$ o((\ log d)/(\logδ))d \ log n)$,并将下界限匹配到一个小附加术语。 此外,我们研究多项式时间建设性算法。我们使用现有的多项式时间构建\ emph {Expander常规两部分图},\ emph {extractors}和\ emph {Condensers}来构造两个多项式时间算法。第一个算法使$ o((D^{1+O(1)}/δ^2)\ CDOT \ log n)$ tests,第二个\ cdot $(d/δ^2)\ cdot quazipoly $ $(\ log log n)$ tests。这是第一个具有几乎最佳测试复杂性的显式结构。

We study the problem of estimating the number of defective items $d$ within a pile of $n$ elements up to a multiplicative factor of $Δ>1$, using deterministic group testing algorithms. We bring lower and upper bounds on the number of tests required in both the adaptive and the non-adaptive deterministic settings given an upper bound $D$ on the defectives number. For the adaptive deterministic settings, our results show that, any algorithm for estimating the defectives number up to a multiplicative factor of $Δ$ must make at least $Ω\left((D/Δ^2)\log (n/D) \right )$ tests. This extends the same lower bound achieved in \cite{ALA17} for non-adaptive algorithms. Moreover, we give a polynomial time adaptive algorithm that shows that our bound is tight up to a small additive term. For non-adaptive algorithms, an upper bound of $O((D/Δ^2)$ $(\log (n/D)+\log Δ) )$ is achieved by means of non-constructive proof. This improves the lower bound $O((\log D)/(\logΔ))D\log n)$ from \cite{ALA17} and matches the lower bound up to a small additive term. In addition, we study polynomial time constructive algorithms. We use existing polynomial time constructible \emph{expander regular bipartite graphs}, \emph{extractors} and \emph{condensers} to construct two polynomial time algorithms. The first algorithm makes $O((D^{1+o(1)}/Δ^2)\cdot \log n)$ tests, and the second makes $(D/Δ^2)\cdot quazipoly$ $(\log n)$ tests. This is the first explicit construction with an almost optimal test complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源