论文标题

$α-\ Mathcal {t} _3 $量子点的电子特性

Electronic Properties of $α-\mathcal{T}_3$ Quantum Dots in Magnetic Fields

论文作者

Filusch, Alexander, Fehske, Holger

论文摘要

我们处理二维$α-\ MATHCAL {T} _3 $晶格中量子点的电子性质。通过实施无限的质量边界条件,我们首先解决了在低能,长波长近似中孤立的量子点的特征值问题,其中由有效的狄拉克样汉密尔顿(Hamiltonian)描述了该系统,该系统被有效的类似狄拉克(Dirac)的汉密尔顿(Pseudospin 1/2)和dice(pseudospin 1/2)之间的插值(Pseudospin 1)。将结果与完整的数值(有限质量)紧密结合晶格计算进行比较。在第二步中,我们通过计算磁场中的$α-\ Mathcal {t} _3 $量子点来分析电荷传输,通过计算磁场的局部密度以及内核多项式和Landauer-Büttiker中的局部密度和电导。因此,也讨论了无序环境的影响。

We address the electronic properties of quantum dots in the two-dimensional $α-\mathcal{T}_3$ lattice when subjected to a perpendicular magnetic field. Implementing an infinite mass boundary condition, we first solve the eigenvalue problem for an isolated quantum dot in the low-energy, long-wavelength approximation where the system is described by an effective Dirac-like Hamiltonian that interpolates between the graphene (pseudospin 1/2) and Dice (pseudospin 1) limits. Results are compared to a full numerical (finite-mass) tight-binding lattice calculation. In a second step we analyse charge transport through a contacted $α-\mathcal{T}_3$ quantum dot in a magnetic field by calculating the local density of states and the conductance within the kernel polynomial and Landauer-Büttiker approaches. Thereby the influence of a disordered environment is discussed as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源