论文标题

通过对抗镜头检查5G及以后的机器学习

Examining Machine Learning for 5G and Beyond through an Adversarial Lens

论文作者

Usama, Muhammad, Mitra, Rupendra Nath, Ilahi, Inaam, Qadir, Junaid, Marina, Mahesh K.

论文摘要

在深度学习的最新进展中,以利用大量数据中隐藏的丰富信息以及解决难以建模/求解的问题(例如资源分配问题),目前在移动网络域中围绕数据驱动的基于AI/ML基于AI/ML的网络自动化,控制和超越5G和超越5G和超越的移动网络域中引起了极大的兴奋。在本文中,我们通过突出跨越多种类型的ML(有监督/无监督/RL)的对抗性维度来提出有关在5G上下文中使用AI/ML的警告性观点,并通过三个案例研究来支持这一点。我们还讨论了减轻这种对抗性ML风险的方法,提供了评估ML模型鲁棒性的指南,并提醒人们对5G围绕ML面向研究的问题的关注。

Spurred by the recent advances in deep learning to harness rich information hidden in large volumes of data and to tackle problems that are hard to model/solve (e.g., resource allocation problems), there is currently tremendous excitement in the mobile networks domain around the transformative potential of data-driven AI/ML based network automation, control and analytics for 5G and beyond. In this article, we present a cautionary perspective on the use of AI/ML in the 5G context by highlighting the adversarial dimension spanning multiple types of ML (supervised/unsupervised/RL) and support this through three case studies. We also discuss approaches to mitigate this adversarial ML risk, offer guidelines for evaluating the robustness of ML models, and call attention to issues surrounding ML oriented research in 5G more generally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源