论文标题

一类奇异领域的耐寒空间

Hardy Spaces for a Class of Singular Domains

论文作者

Gallagher, Anne-Katrin, Gupta, Purvi, Lanzani, Loredana, Vivas, Liz

论文摘要

我们设定了一个框架,以研究通过具有先前耐硬的空间结构的域中的分析性超曲面的补充。继承的结构是一种过滤,在特定设置中研究了其各个方面。对于刺穿的平面域,我们证明了Kerzman和Stein著名的刚性引理的概括。对于卵域观察到稳定现象。最后,使用适当的全态图,我们得出了某些功率将来的Hartogs三角形的耐力空间过滤,尽管这些域落在原始框架的范围之内。

We set a framework for the study of Hardy spaces inherited by complements of analytic hypersurfaces in domains with a prior Hardy space structure. The inherited structure is a filtration, various aspects of which are studied in specific settings. For punctured planar domains, we prove a generalization of a famous rigidity lemma of Kerzman and Stein. A stabilization phenomenon is observed for egg domains. Finally, using proper holomorphic maps, we derive a filtration of Hardy spaces for certain power-generalized Hartogs triangles, although these domains fall outside the scope of the original framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源