论文标题
关于复杂性的舒伯特品种
On Schubert varieties of complexity one
论文作者
论文摘要
令$ b $为$ \ mathrm {gl} _n(\ mathbb {c})$和$ \ mathbb {t} $的borel子组。然后,$ \ mathbb {t} $在$ \ mathrm {gl} _ {n}(\ Mathbb {c})/b $上代替$ \ mathrm {gl} _ {n}/b $,每个schubert variect is $ \ mathbb {t} $ - 不变。我们说,如果$ x_w $中的最大$ \ mathbb {t} $ - 轨道具有CODIMENSION $ K $,则Schubert品种很复杂$ K $。在本文中,我们讨论了与复杂性的舒伯特品种有关的拓扑,几何和组合。
Let $B$ be a Borel subgroup of $\mathrm{GL}_n(\mathbb{C})$ and $\mathbb{T}$ a maximal torus contained in $B$. Then $\mathbb{T}$ acts on $\mathrm{GL}_{n}(\mathbb{C})/B$ and every Schubert variety is $\mathbb{T}$-invariant. We say that a Schubert variety is of complexity $k$ if a maximal $\mathbb{T}$-orbit in $X_w$ has codimension $k$. In this paper, we discuss topology, geometry, and combinatorics related to Schubert varieties of complexity one.