论文标题

Bergman和Bergman-Vekua空间的极端问题有限

Bounded Extremal Problems in Bergman and Bergman-Vekua spaces

论文作者

Delgado, Briceyda, Leblond, Juliette

论文摘要

我们分析了vekua方程解决方案$ \ partial $ w =($ \ partial $ f /f)w的伯格曼空间A P f(d)在复数平面的单位光盘中,用于Lipschitz-sk-sk-smooth nor-pool not-plate nor-plansighthishing for的真实值f和1 <p <p <p <$ \ f $ \ \ fyfty $。我们考虑了伯格曼空间A P(d)及其广义版本A P F(d)中有界限的极端问题(最佳约束近似)的家族,其中包括通过限制属于P(d)或P F(D)受范围约束的函数来近似D子集的函数。为P = 2提供了初步的建设性结果。

We analyze Bergman spaces A p f (D) of generalized analytic functions of solutions to the Vekua equation $\partial$w = ($\partial$f /f)w in the unit disc of the complex plane, for Lipschitz-smooth non-vanishing real valued functions f and 1 < p < $\infty$. We consider a family of bounded extremal problems (best constrained approximation) in the Bergman space A p (D) and in its generalized version A p f (D), that consists in approximating a function in subsets of D by the restriction of a function belonging to A p (D) or A p f (D) subject to a norm constraint. Preliminary constructive results are provided for p = 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源