论文标题
耦合的岩纸剪循环中的拓扑相变
Topological phase transition in coupled rock-paper-scissor cycles
论文作者
论文摘要
拓扑阶段的标志是在系统边界处发生受拓扑保护的模式。在这里,我们发现拓扑阶段在反对称的Lotka-Volterra方程(ALVE)中。肺活是一个非线性动力学系统,例如描述了岩纸胶周期的进化动力学。在一维岩纸塞循环的一维链上,拓扑阶段变为强大的极化状态。在左和右极化之间的过渡点,观察到孤子波。这种拓扑相过渡在于“十倍”分类中的对称类别$ d $,也由一维拓扑超导体实现。
A hallmark of topological phases is the occurrence of topologically protected modes at the system`s boundary. Here we find topological phases in the antisymmetric Lotka-Volterra equation (ALVE). The ALVE is a nonlinear dynamical system and describes, e.g., the evolutionary dynamics of a rock-paper-scissors cycle. On a one-dimensional chain of rock-paper-scissor cycles, topological phases become manifest as robust polarization states. At the transition point between left and right polarization, solitonic waves are observed. This topological phase transition lies in symmetry class $D$ within the "ten-fold way" classification as also realized by 1D topological superconductors.