论文标题

基于Fisher转化的固定和随机效应荟萃分析相关性的置信区间

Fisher transformation based Confidence Intervals of Correlations in Fixed- and Random-Effects Meta-Analysis

论文作者

Welz, Thilo, Doebler, Philipp, Pauly, Markus

论文摘要

相关系数的荟萃分析是整合许多横截面和纵向研究设计结果的重要技术。通常在置信区间的帮助下评估汇总估计值的不确定性,这可以作为对基本相关性的双向假设的假设检验的两倍。建造主要效果的置信区间的标准方法是基于Fisher-Z转换的树篱 - olkin-deveve visvea fisher-Z(HOVZ)方法。然而,先前研究的结果(Field,2005; Hafdahl和Williams,2009)表明,在随机效应中,HOVZ置信区间的性能可能不令人满意。为此,我们提出了HOVZ方法的改进,该方法基于主要效应估计值的增强方差估计器。为了研究固定效果和随机效应荟萃分析模型的新置信区间的覆盖范围,我们进行了广泛的模拟研究,将其与已建立的方法进行了比较。数据是通过截短的正常和β分布模型生成的。结果表明,我们新提出的置信区间基于knapp-hartung型方差估计器或鲁棒的异质性一致的夹层估计器与积分Z-TO-R变换结合使用(Hafdahl,2009年)(Hafdahl,2009年)(Hafdahl,2009)(2009年)在大多数情况下,在更适当的Beta Beta分布模拟模型中,在大多数场景中提供了比现有方法更准确的覆盖范围。

Meta-analyses of correlation coefficients are an important technique to integrate results from many cross-sectional and longitudinal research designs. Uncertainty in pooled estimates is typically assessed with the help of confidence intervals, which can double as hypothesis tests for two-sided hypotheses about the underlying correlation. A standard approach to construct confidence intervals for the main effect is the Hedges-Olkin-Vevea Fisher-z (HOVz) approach, which is based on the Fisher-z transformation. Results from previous studies (Field, 2005; Hafdahl and Williams, 2009), however, indicate that in random-effects models the performance of the HOVz confidence interval can be unsatisfactory. To this end, we propose improvements of the HOVz approach, which are based on enhanced variance estimators for the main effect estimate. In order to study the coverage of the new confidence intervals in both fixed- and random-effects meta-analysis models, we perform an extensive simulation study, comparing them to established approaches. Data were generated via a truncated normal and beta distribution model. The results show that our newly proposed confidence intervals based on a Knapp-Hartung-type variance estimator or robust heteroscedasticity consistent sandwich estimators in combination with the integral z-to-r transformation (Hafdahl, 2009) provide more accurate coverage than existing approaches in most scenarios, especially in the more appropriate beta distribution simulation model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源