论文标题
$ p $ laplace问题的非单明解决方案,允许非线性符号的多次更改
Non-singular solutions of $p$-Laplace problems, allowing multiple changes of sign in the nonlinearity
论文作者
论文摘要
对于$ p $ -laplace dirichlet问题(其中$φ(t)= t | t | t |^{p-2} $,$ p> 1 $)\ [φ(u'(x))'+ f(u(x))= 0 \; \; \; \; \; \; \; \; \; \ mbox {对于$ -1 <x <1 $},\; \; u(-1)= u(1)= 0 \]假设$ f'(u)>(p-1)\ frac {f(u)} {u}> 0 $ for $> u>γ> 0 $,而$ \ int_u^γf(t)\,dt <0 $,dt <0 $,for(for,uff),dt <0 $。然后,任何积极的解决方案,具有$ \ max _ {( - 1,1)} u(x)= u(x)= u(0)>γ$,无论多少次,$ f(u)$更改符号$(0,γ)$,无论是少数的。溶液的独特性随之而来。
For the $p$-Laplace Dirichlet problem (where $φ(t)=t|t|^{p-2}$, $p>1$) \[ φ(u'(x))'+ f(u(x))=0 \;\;\;\; \mbox{for $-1<x<1$}, \;\; u(-1)=u(1)=0 \] assume that $f'(u)>(p-1)\frac{f(u)}{u}>0$ for $u>γ>0$, while $\int_u^γf(t) \, dt < 0$ for all $u \in (0,γ)$. Then any positive solution, with $\max_{(-1,1)} u(x)=u(0)>γ$, is non-singular, no matter how many times $f(u)$ changes sign on $(0,γ)$. Uniqueness of solution follows.