论文标题

高阶显式runge-kutta超质量保护法的界限限制限制

Bound-preserving flux limiting for high-order explicit Runge-Kutta time discretizations of hyperbolic conservation laws

论文作者

Kuzmin, Dmitri, de Luna, Manuel Quezada, Ketcheson, David I., Grüll, Johanna

论文摘要

我们引入了一个通用框架,用于在标量双曲保护法的高阶时空离散法中执行本地或全球最大原则。我们从足够的条件开始,以使空间离散化结合(BP)并满足半分化的最大原理。 Next, we propose a global monolithic convex (GMC) flux limiter which has the structure of a flux-corrected transport (FCT) algorithm but is applicable to spatial semi-discretizations and ensures the BP property of the fully discrete scheme for strong stability preserving (SSP) Runge-Kutta time discretizations.为了规避SSP时间积分器的顺序障碍,我们使用GMC型限制器约束了中间阶段和/或一般高级RK方法的最后阶段。在这项工作中,我们的理论和数值研究仅限于明确的方案,这些方案可证明是足够小的时间步骤的BP。新的GMC限制框架提供了放大不平等约束界限,以更高的准确性,以更严格的时间步长限制。对于三种代表性的RK方法,与1D的三种代表性RK方法相结合,对三种代表性RK方法进行了数值验证,对所提出的限制器保持全局界限并识别良好的平滑解决方案的能力得到了验证。

We introduce a general framework for enforcing local or global maximum principles in high-order space-time discretizations of a scalar hyperbolic conservation law. We begin with sufficient conditions for a space discretization to be bound preserving (BP) and satisfy a semi-discrete maximum principle. Next, we propose a global monolithic convex (GMC) flux limiter which has the structure of a flux-corrected transport (FCT) algorithm but is applicable to spatial semi-discretizations and ensures the BP property of the fully discrete scheme for strong stability preserving (SSP) Runge-Kutta time discretizations. To circumvent the order barrier for SSP time integrators, we constrain the intermediate stages and/or the final stage of a general high-order RK method using GMC-type limiters. In this work, our theoretical and numerical studies are restricted to explicit schemes which are provably BP for sufficiently small time steps. The new GMC limiting framework offers the possibility of relaxing the bounds of inequality constraints to achieve higher accuracy at the cost of more stringent time step restrictions. The ability of the presented limiters to preserve global bounds and recognize well-resolved smooth solutions is verified numerically for three representative RK methods combined with weighted essentially nonoscillatory (WENO) finite volume space discretizations of linear and nonlinear test problems in 1D.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源