论文标题
关键2+1 HORAVA理论中的渐近平坦度和非翻新解决方案
Asymptotic flatness and nonflat solutions in the critical 2+1 Horava theory
论文作者
论文摘要
2+1维度中的Horava理论可以在耦合常数没有局部自由度的耦合常数的临界点上进行。这表明这种关键案例可以具有2+1个总体相对论的许多特征,尤其是其大距离的有效动作,该动作在衍生物中是二阶的。为了加深这种关系,我们研究了有效作用的渐近平坦解决方案。我们从2+1的一般相对论中采用渐近平坦度的一般定义,其中接近具有非固定锥形角度的渐近平坦区域。我们表明,一类常规渐近平面解决方案完全平坦。该类的特征是具有非负能量(当RICCI标量的耦合常数为正时)。我们对有效的行动进行了详细的规范分析,表明该理论的动态禁止当地的自由度。与2+1的总体相对论的另一个相似之处是没有牛顿力量。与这些结果相反,我们找到了反对与2+1一般相对论相似性的证据:我们找到了相同有效理论的确切的非纤维溶液。该溶液不含渐近平坦的解决方案。
The Horava theory in 2+1 dimensions can be formulated at a critical point in the space of coupling constants where it has no local degrees of freedom. This suggests that this critical case could share many features with 2+1 general relativity, in particular its large-distance effective action that is of second order in derivatives. To deepen on this relationship, we study the asymptotically flat solutions of the effective action. We take the general definition of asymptotic flatness from 2+1 general relativity, where an asymptotically flat region with a nonfixed conical angle is approached. We show that a class of regular asymptotically flat solutions are totally flat. The class is characterized by having nonnegative energy (when the coupling constant of the Ricci scalar is positive). We present a detailed canonical analysis on the effective action showing that the dynamics of the theory forbids local degrees of freedom. Another similarity with 2+1 general relativity is the absence of a Newtonian force. In contrast to these results, we find evidence against the similarity with 2+1 general relativity: we find an exact nonflat solution of the same effective theory. This solution is out of the set of asymptotically flat solutions.