论文标题

快速免疫系统启发了组合优化的超突击操作员

Fast Immune System Inspired Hypermutation Operators for Combinatorial Optimisation

论文作者

Corus, D., Oliveto, P. S., Yazdani, D.

论文摘要

各种研究表明,免疫系统受到启发的超突击操作员可以使人工免疫系统(AIS)在逃避多模式优化问题的局部优化方面非常有效。但是,与标准进化算法相比,在剥削阶段,这种效率的牺牲是以较慢的运行时间为代价。我们建议对传统的“突变潜能过度过度”(HMP)进行修改,以使它们在剥削方面有效,并保持其有效的探索性特征。我们没有在每次超松受射线后确定性地评估适应性,而是用“抛物线”分布随机地对适应性函数进行样本,该功能允许HMP的“停止在首次建设性突变”(FCM)变体以减少浪费功能评估的线性量量的线性量,而未发现浪费的函数评估。随机分布还允许完全删除FCM机制,如HMP操作员设计中最初所需的那样。我们严格证明了所提出的操作员在文献中对HMP的性能进行了严格理解的所有基准功能的有效性,并验证了获得的见解,以显示出线性加速,以识别与组合优化的高质量近似解决方案,以识别经典NP-HARD问题的高质量解决方案。然后,在对完整的标准Opt-IA AIS的分析中,我们展示了HMP运营商对传统运营商的优越性,随机评估方案允许HMP和老化操作员和谐地工作。通过对文献中其他“快速突变”操作员的比较性能研究,我们得出结论,抛物线评估方案的幂律分布是在黑匣子方案中最佳折衷的,在黑匣子方案中,几乎没有问题知识。

Various studies have shown that immune system inspired hypermutation operators can allow artificial immune systems (AIS) to be very efficient at escaping local optima of multimodal optimisation problems. However, this efficiency comes at the expense of considerably slower runtimes during the exploitation phase compared to standard evolutionary algorithms. We propose modifications to the traditional `hypermutations with mutation potential' (HMP) that allow them to be efficient at exploitation as well as maintaining their effective explorative characteristics. Rather than deterministically evaluating fitness after each bit-flip of a hypermutation, we sample the fitness function stochastically with a `parabolic' distribution which allows the `stop at first constructive mutation' (FCM) variant of HMP to reduce the linear amount of wasted function evaluations when no improvement is found to a constant. The stochastic distribution also allows the removal of the FCM mechanism altogether as originally desired in the design of the HMP operators. We rigorously prove the effectiveness of the proposed operators for all the benchmark functions where the performance of HMP is rigorously understood in the literature and validating the gained insights to show linear speed-ups for the identification of high quality approximate solutions to classical NP-Hard problems from combinatorial optimisation. We then show the superiority of the HMP operators to the traditional ones in an analysis of the complete standard Opt-IA AIS, where the stochastic evaluation scheme allows HMP and ageing operators to work in harmony. Through a comparative performance study of other `fast mutation' operators from the literature, we conclude that a power-law distribution for the parabolic evaluation scheme is the best compromise in black box scenarios where little problem knowledge is available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源