论文标题

小物体检测的内在关系推理

Intrinsic Relationship Reasoning for Small Object Detection

论文作者

Fu, Kui, Li, Jia, Ma, Lin, Mu, Kai, Tian, Yonghong

论文摘要

图像和视频中的小物体通常不是独立的个人。取而代之的是,它们或多或少地呈现了一些语义和空间布局之间的关系。因此,建模和推断这种内在关系可能对小物体检测有益。在本文中,我们为小物体检测提出了一种新颖的上下文推理方法,该方法模拟并渗透对象之间的内在语义和空间布局关系。具体而言,我们首先构建一个语义模块,以基于初始区域特征和空间布局模块对稀疏的语义关系进行建模,以分别根据其位置和形状信息来建模稀疏的空间布局关系。然后,他们俩都被送入上下文推理模块,以将上下文信息集成到对象及其关系方面,这进一步与原始的区域视觉特征融合在一起,以进行分类和回归。实验结果表明,所提出的方法可以有效地提高小物体检测性能。

The small objects in images and videos are usually not independent individuals. Instead, they more or less present some semantic and spatial layout relationships with each other. Modeling and inferring such intrinsic relationships can thereby be beneficial for small object detection. In this paper, we propose a novel context reasoning approach for small object detection which models and infers the intrinsic semantic and spatial layout relationships between objects. Specifically, we first construct a semantic module to model the sparse semantic relationships based on the initial regional features, and a spatial layout module to model the sparse spatial layout relationships based on their position and shape information, respectively. Both of them are then fed into a context reasoning module for integrating the contextual information with respect to the objects and their relationships, which is further fused with the original regional visual features for classification and regression. Experimental results reveal that the proposed approach can effectively boost the small object detection performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源