论文标题

量子高斯状态中的多参数量子估计理论

Multiparameter Quantum Estimation Theory in Quantum Gaussian states

论文作者

Bakmou, Lahcen, Daoud, Mohammed, laamara, Rachid ahl

论文摘要

多参数量子估计理论旨在同时确定给定量子系统状态中所有参数的最终精度。确定最终的精度取决于量子渔民信息矩阵(QFIM),这对于获得量子cramér-rao结合至关重要。这是这项工作的主要动机,它涉及QFIM分析表达的计算。受J. Phys报告的结果的启发。 A 52,035304(2019),量子高斯状态的多参数量子估计理论的一般形式,就其第一和第二矩而言。我们给出了右对数衍生物(RLD)和对对数衍生物(SLD)运算符的分析公式。然后,我们得出相应的量子Fisher信息矩阵的一般表达。我们还得出了条件的明确表达,该表达可确保估计几个参数时量子cramér-rao的饱和。最后,我们研究了一些示例以阐明我们的结果的使用

Multiparameter quantum estimation theory aims to determine simultaneously the ultimate precision of all parameters contained in the state of a given quantum system. Determining this ultimate precision depends on the quantum Fisher information matrix (QFIM) which is essential to obtaining the quantum Cramér-Rao bound. This is the main motivation of this work which concerns the computation of the analytical expression of the QFIM. Inspired by the results reported in J. Phys. A 52, 035304 (2019), the general formalism of the multiparameter quantum estimation theory of quantum Gaussian states in terms of their first and second moments are given. We give the analytical formulas of right logarithmic derivative (RLD) and symmetric logarithmic derivative (SLD) operators. Then we derive the general expressions of the corresponding quantum Fisher information matrices. We also derive an explicit expression of the condition which ensures the saturation of the quantum Cramér-Rao bound in estimating several parameters. Finally, we examine some examples to clarify the use of our results

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源