论文标题
提高多任务学习的共享路由
Boosting Share Routing for Multi-task Learning
论文作者
论文摘要
多任务学习(MTL)旨在充分利用多任务监督信号中包含的知识,以提高整体性能。如何使多个任务的知识适当共享是MTL的一个开放问题。大多数现有的深MTL模型基于参数共享。但是,由于任务之间的关系很复杂,因此很难设计合适的共享机制。在本文中,我们提出了一个称为多任务神经体系结构搜索(MTNA)的通用框架,以有效地为给定的MTL问题找到合适的共享路线。 MTNA将共享部分模块化为子网络的多层。它允许在这些子网络之间进行稀疏的连接,并且在某个路线上启用了基于门控的软共享。从这种环境中受益,我们搜索空间中的每个候选架构都定义了一种动态的稀疏共享路线,与以前的方法中的完整共享相比,它更灵活。我们表明,现有的典型共享方法是我们搜索空间中的子图。与单任务模型和典型的多任务方法相比,在三个现实世界推荐数据集上进行了广泛的实验表明,MTAN可取得一致的改进,同时保持较高的计算效率。此外,深入的实验表明,MTNA可以学习合适的稀疏途径来减轻负转移。
Multi-task learning (MTL) aims to make full use of the knowledge contained in multi-task supervision signals to improve the overall performance. How to make the knowledge of multiple tasks shared appropriately is an open problem for MTL. Most existing deep MTL models are based on parameter sharing. However, suitable sharing mechanism is hard to design as the relationship among tasks is complicated. In this paper, we propose a general framework called Multi-Task Neural Architecture Search (MTNAS) to efficiently find a suitable sharing route for a given MTL problem. MTNAS modularizes the sharing part into multiple layers of sub-networks. It allows sparse connection among these sub-networks and soft sharing based on gating is enabled for a certain route. Benefiting from such setting, each candidate architecture in our search space defines a dynamic sparse sharing route which is more flexible compared with full-sharing in previous approaches. We show that existing typical sharing approaches are sub-graphs in our search space. Extensive experiments on three real-world recommendation datasets demonstrate MTANS achieves consistent improvement compared with single-task models and typical multi-task methods while maintaining high computation efficiency. Furthermore, in-depth experiments demonstrates that MTNAS can learn suitable sparse route to mitigate negative transfer.