论文标题

高度不规则的轨道,用于有限类型的子迁移:大相交和出现

Highly irregular orbits for subshifts of finite type: large intersections and emergence

论文作者

Nakano, Yushi, Zelerowicz, Agnieszka

论文摘要

在他们最近的论文[KNS2019]中,第一作者S. Kiriki和T. Soma引入了一个尖锐出现的概念,以测量不规则轨道的复杂性。他们以高点出现的形式构建了整个移位的残留子集。在本文中,我们考虑了一组有限类型的拓扑混合子缩短的点呈高点出现的点。我们表明,该集合具有完整的拓扑熵,完整的Hausdorff尺寸和全拓扑压力,可为任何Hölder持续潜力。此外,我们表明该集合属于具有大型交叉属性的某些类别的集合。这是[FP2011]对出现和carathéodory维度的自然概括。

In their recent paper [KNS2019], the first author, S. Kiriki, and T. Soma introduced a concept of pointwise emergence to measure the complexity of irregular orbits. They constructed a residual subset of the full shift with high pointwise emergence. In this paper we consider the set of points with high pointwise emergence for topologically mixing subshifts of finite type. We show that this set has full topological entropy, full Hausdorff dimension, and full topological pressure for any Hölder continuous potential. Furthermore, we show that this set belongs to a certain class of sets with large intersection property. This is a natural generalization of [FP2011] to pointwise emergence and Carathéodory dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源