论文标题
表面的Gromov-Hausdorff收敛理论
Gromov-Hausdorff convergence theory of surfaces
论文作者
论文摘要
在本文中,我们使用Gromov-Haustorff融合的观点对众所周知的定理有了一些新的理解,这是Huber的分类理论\ cite {huber} \ cite {ms} {ms},以使其完整的riemannian表面浸入$ \ \ r}^r}^n $(r} r}^n $中( $ \int_σ| a |^2 <+\ infty $)在很大程度上取决于Müller和šverák的Hardy-Estimate \ cite {MS},用于浸入$ \ Mathbb {r}^n $的表面的曲率形式,并具有有限的总曲率。
In this paper, we use the viewpoint of Gromov-Haustorff convergence to give some new comprehension of well known theorem,it is Huber's classification theorem\cite{Huber}\cite{MS}for complete Riemannian surfaces immersed in $\mathbb{R}^n$ with finite total curvature( $\int_Σ|A|^2<+\infty$) it depend heavily on Müller and Šverák's Hardy-estimate\cite{MS} for the curvature form of surfaces immersed in $\mathbb{R}^n$ with finite total curvature.