论文标题

可能非线性因子模型的因果推断

Causal Inference in Possibly Nonlinear Factor Models

论文作者

Feng, Yingjie

论文摘要

本文开发了一种一般的因果推断方法,用于使用噪声测量的混杂因素进行治疗效果模型。关键特征是,通过未知的,可能是非线性因子的结构,一系列嘈杂的测量值与潜在的潜在混杂因素有关。主构建块是本地主要子空间近似过程,结合了$ k $ neart的邻居匹配和主成分分析。许多因果参数的估计量,包括平均治疗效果和反事实分布,是基于双重运动得分函数构建的。建立了这些估计量的大样本特性,这仅需要对主要子空间近似情况相对温和的条件。通过研究政治联系对金融公司股票回报的影响以及蒙特卡洛实验的经验申请进行了说明。有关当地总体子空间近似方法的主要技术和方法论结果可能具有独立的兴趣。

This paper develops a general causal inference method for treatment effects models with noisily measured confounders. The key feature is that a large set of noisy measurements are linked with the underlying latent confounders through an unknown, possibly nonlinear factor structure. The main building block is a local principal subspace approximation procedure that combines $K$-nearest neighbors matching and principal component analysis. Estimators of many causal parameters, including average treatment effects and counterfactual distributions, are constructed based on doubly-robust score functions. Large-sample properties of these estimators are established, which only require relatively mild conditions on the principal subspace approximation. The results are illustrated with an empirical application studying the effect of political connections on stock returns of financial firms, and a Monte Carlo experiment. The main technical and methodological results regarding the general local principal subspace approximation method may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源