论文标题
非局部弹性的可变顺序方法:通过深度学习技术的理论表述和秩序识别
Variable-Order Approach to Nonlocal Elasticity: Theoretical Formulation and Order Identification via Deep Learning Techniques
论文作者
论文摘要
这项研究介绍了可变阶(VO)分数计算在非局部固体建模中的应用。通过VO运动学的非局部分数连续机械框架的重新制定,为表现出依赖位置依赖性非局部行为的固体建模提供了独特的方法。利用应变张量的框架不变性来确定对VO的定义的约束。然后,将vo非局部连续公式用于建模Euler-Bernoulli型光束的响应,其管理方程的构造是通过变异原理以强形式得出的。 VO公式显示为自动伴侣和正定原料,可确保控制方程式良好,并且没有边界效应。这些特征与非局部弹性的经典积分方法相反,在那里,并非总是有可能获得积极的定义和自我接合系统。促进VO方法使用的关键步骤是确定方法来确定描述给定物理系统的VO。这项研究提出了一个基于深度学习的框架,该框架能够解决鉴定VO的反面问题,该框架根据其响应来描述非局部光束的行为。已经确定,双向复发性神经网络的内部体系结构使其适合非本地边界值问题,类似于本研究中治疗的问题。结果表明,即使对于与网络训练数据集不一致的非局部光束,网络也可以准确解决反问题。尽管在1D Euler-Bernoulli梁的背景下呈现,但VO非局部表述和深度学习技术都非常通用,并且可以扩展到任何一般的高维vo边界价值问题的解决方案。
This study presents the application of variable-order (VO) fractional calculus to the modeling of nonlocal solids. The reformulation of nonlocal fractional-order continuum mechanic framework, by means of VO kinematics, enables a unique approach to the modeling of solids exhibiting position-dependent nonlocal behavior. The frame-invariance of the strain tensor is leveraged to identify constraints on the definition of the VO. The VO nonlocal continuum formulation is then applied to model the response of Euler-Bernoulli type beams whose governing equations are derived in strong form by means of variational principles. The VO formulation is shown to be self-adjoint and positive-definite, which ensure that the governing equations are well-posed and free from boundary effects. These characteristics stand in contrast to classical integral approaches to nonlocal elasticity, where it is not always possible to obtain positive-definite and self-adjoint systems. A key step in promoting the use of VO approaches is to identify methodologies to determine the VO describing a given physical system. This study presents a deep learning based framework capable of solving the inverse problem consisting in the identification of the VO describing the behavior of the nonlocal beam on the basis of its response. It is established that the internal architecture of bidirectional recurrent neural networks makes them suitable for nonlocal boundary value problems, similar to the one treated in this study. Results show that the network accurately solves the inverse problem even for nonlocal beams with VO patterns inconsistent with the network training data set. Although presented in the context of a 1D Euler-Bernoulli beam, both the VO nonlocal formulation and the deep learning techniques are very general and could be extended to the solution of any general higher-dimensional VO boundary value problem.