论文标题

Ilgaco:步态协变量因素的增量学习

iLGaCo: Incremental Learning of Gait Covariate Factors

论文作者

Mu, Zihao, Castro, Francisco M., Marin-Jimenez, Manuel J., Guil, Nicolas, Li, Yan-ran, Yu, Shiqi

论文摘要

步态是一种流行的生物特征模式,用于根据人的行走方式识别人们。传统上,使用整个培训数据集对基于深度学习的步态识别方法进行了培训。实际上,如果需要包括新数据(类,视图,步行条件等),则有必要再次重新培养使用旧数据样本的模型。 在本文中,我们提出了Ilgaco,这是步态识别的协变量因素的第一种增量学习方法,其中可以通过使用整个数据集从scratch重新训练它的新信息来更新深层模型。取而代之的是,我们的方法通过新数据和一小部分以前的样本进行了较短的培训过程。这样,我们的模型在保留以前的知识的同时学习新信息。 我们以两种增量方式在CASIA-B数据集上评估Ilgaco:添加新的查看点并添加新的步行条件。在这两种情况下,我们的结果都接近经典的“训练中”方法,从而获得了从0.2%到1.2%的准确性下降,这表明了我们方法的功效。此外,根据实验,Ilgaco与其他增量学习方法(例如LWF和ICARL)的比较显示了准确性的显着提高,具体取决于实验。

Gait is a popular biometric pattern used for identifying people based on their way of walking. Traditionally, gait recognition approaches based on deep learning are trained using the whole training dataset. In fact, if new data (classes, view-points, walking conditions, etc.) need to be included, it is necessary to re-train again the model with old and new data samples. In this paper, we propose iLGaCo, the first incremental learning approach of covariate factors for gait recognition, where the deep model can be updated with new information without re-training it from scratch by using the whole dataset. Instead, our approach performs a shorter training process with the new data and a small subset of previous samples. This way, our model learns new information while retaining previous knowledge. We evaluate iLGaCo on CASIA-B dataset in two incremental ways: adding new view-points and adding new walking conditions. In both cases, our results are close to the classical `training-from-scratch' approach, obtaining a marginal drop in accuracy ranging from 0.2% to 1.2%, what shows the efficacy of our approach. In addition, the comparison of iLGaCo with other incremental learning methods, such as LwF and iCarl, shows a significant improvement in accuracy, between 6% and 15% depending on the experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源